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Supplementary Text

Text S1. Databases used in DeepMSA?2

Sequence databases used in DeepMSA?2 are categorized into two groups: genome and metagenome databases.
For genome sequence databases, both Uniclust30 and UniRef30 contain HHblits-style Hidden Markov Model (HMM)
profiles, where protein sequences in UniProtKB! are clustered at a threshold of 30% pairwise sequence identity
employing MMseqs22. Uniclust30 is the version of the database generated before 2019, while UniRef30 was created
after 2019. Uniref90 offers sequences sourced from UniProtKB, meticulously clustered at a threshold of 90% pairwise
sequence identity utilizing MMseqs2. Within each cluster, the representative sequence is exclusively retained in the
database, ensuring optimal representation. In total, those three genomics sequence databases contain 464 million
sequences.

For metagenome databases, Metaclust was devised through the clustering and amalgamation of approximately
1.59 billion protein sequence fragments, which are predicted by Prodigal®, sourced from around 2,200 metagenomics
and meta-transcriptomic datasets acquired from JGI*. The clustering was carried out with a 50% sequence identity
threshold, while ensuring a coverage of 90%. Mgnify was collected by the EBI Metagenomics project’ and was
clustered by MMseqs2 using coverage and sequence identity threshold at 90%. BFD is an HHblits-style HMM
database that was created by clustering 2.5 billion protein sequences from UniProtKB30, Metaclust, soil reference
catalog, and marine eukaryotic reference catalog assembled by Plass® using MMseqs2 with 30% pairwise sequence
identity. Those three third-party metagenomics sequence databases contain ~3.2 billion sequences.

In addition, three additional metagenomics sequence databases, TaraDB, MetaSourceDB, and JGIclust were
newly created for DeepMSA2. The three in-house databases, which were built using data collected from EBI
Metagenomics project and the Joint Genome Institute (JGI), contain in total 35.6 billion sequences, which are
approximately 11 times as large as the above-mentioned three third-party metagenomics databases (~3.2 billion).
Among them, TaraDB was created from the ‘Tara Oceans’ project hosted on EBI Metagenomics with 245
metagenomics sequencing runs (https://www.ebi.ac.uk/metagenomics/studies/ERP001736). The raw read sequences
were assembled by MEGAHIT v1.0 to contigs and only the contigs with >500 nucleotides were selected. Next,
Prodigal (v2.6) was used with parameters ‘-c —m p meta’ to identify ORFs from metagenome data and translate the
gene to protein productions. Finally, CD-HIT (v4.6)” was utilized to cluster protein sequences in each sample, and the
sequence identity threshold was set to 95% to remove the identical sequence. Next, MetaSourceDB collected
metagenome data from four large environmental biomes from the EBI. Those four biomes, including ‘Fermentor’,
‘Soil’, ‘Lake’, and ‘Gut’, cover all typical biomes of the EBI database. In total, 1,705 high-quality samples were
selected, assembled, and clustered by the similar pipeline used in Tara DB. In addition to Prodigal, FragGeneScan
(v1.20)® was also used to predict ORFs from assembled contigs to avoid missing the short sequences. Finally, JGIclust
was created from Joint Genome Institute (JGI), containing ~25,000 metagenomics and meta-transcriptomic samples.
For each project, the assembled protein sequences (‘*.assembled.faa”) were downloaded and clustered with 90%
sequence identity at 90% coverage by MMseqs2. For each cluster of one project, only the representative sequence was
kept in the in-house JGIclust database. To further remove the redundancy, MetaSourceDB, TaraDB, and JGIclust
were iteratively clustered to 50% identity using MMseqs2’s linear cluster pipeline. Coverage was set at 0.8, using ‘—
cov-mode 1’. Due to the storage and memory limitation, the entire sequence database was split to difference small
chunks (<100GB) and clustered using the iterative greedy strategy. These chunks were merged into larger chunks,
ensuring the merged databases did not exceed 200GB and the merged chunks were then re-clustered to 50% identity.
The final large chunks that cannot further be merged were pairwise clustered. Redundant sequences were removed
after each clustering round before proceeding to the next pairwise clustering. The process culminated in the final
database clustered at 50% identity.

Text S2. dMSA, qMSA, and mMSA pipelines used in DeepMSA2

dMSA (which a short name of the original DeepMSA pipeline®) is comprised of three stages. In Stage 1, HHblits!”
from the HH-suite package!! is used to search the query sequence against the Uniclust30 database'? to generate the
first-level MSA. If there are not enough homologous sequences in the first-level MSA, i.e., the number of effective
sequences (Neff) of the first-level MSA generated by Stage 1 is <128, Stage 2 will be performed. In Stage 2,
Jackhmmer from the HMMER package!® is used to search the query sequence against the UniRef90 database'* to
generate homologous sequences (hits) for the construction of a custom HHblits-formatted database. Using the first-
level MSA as input, HHblits is again applied to search against the custom database to generate the second-level MSA.
If the Neff of the second-level MSA is still <128, Stage 3 will be performed. In Stage 3, similar to Stage 2, the second-
level MSA is used to jump-start an HHblits search against a new custom HHblits-formatted database to get the third-
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level MSA. The new custom database in Stage 3 is built by HMMsearch from HMMER to search a profile Hidden
Markov Model (HMM) built by HMMbuild from the HMMER package against the Metaclust'® metagenome sequence
database.

qMSA (which stands for “quadruple MSA”) contains four stages to perform Hhblits2, Jackhmmer, Hhblits3, and
HMMsearch searches against UniRef30 (version 2020 _01), UniRef90, BFD, and Mgnify, respectively. The sequence
hits from Jackhmmer, HHblits3 and HMMsearch in Stage 2, 3 and 4 of qMSA are converted into an HHblits-formatted
database, against which the HHblits2 search is performed using the MSA input from the previous stage.

mMSA (which stands for “multi-level MSA”) utilizes the alignment in Stage 3 of qMSA as a probe by
HMMsearch to search through the in-house metagenomics sequence databases (TaraDB, MetaSourceDB and
JGIclust), and the resulting sequence hits are converted into a new sequence database. This database is then used as
the target database, which is searched by HHblits2 with three seed MSAs (MSAs from stage 2 of AMSA, and stages
2 and 3 of qMSA), to derive three new MSAs.

Text S3. The definition of Zscore used in LOMETS3 pipeline

The Zscore(i, j) in the above scoring function includes three score terms from contacts, distances, and hydrogen
bond geometries predicted by AttentionPotential and DeepPotential, and one sequence profile score term from the
original profile-based threading methods as follows:

Zscore(i,j) = wy ZscoreMAE(i, j) + w, Zscore™O(i, j)
+ws Zscore"B (i, ) + w, ZscoreP™f (i, ) S1D

where ZscoreMA4E (i, ) is the Zscore of the mean absolute error (MAE) based on the predicted distance map,
Zscore®™O(i, j) is the Z-score of the number of overlapping contacts based on the predicted contact map (CMO),
ZscorelB (i, j) is the Z-score based on the predicted hydrogen bond geometry (HB), and ZscoreP™/ (i, j) is a score
which is based on the original profile threading scores. The formulas of these four Z-scores are as follows:
—MAE(i,j)— (—MAE()))

ZscoreMAE (i, j) = o (—MAE()) (52)
ali 185 (m, n)|d9"e"Y — @LemPlete) 4 (1 — §(m, n))GapPenalt
MAEG,j) = w6 W) |dmp ~ = dmn | + (1 = 6(m,n))Gap Y] 53)

i 6(m,m)
where d{s™ is the predicted distance between residue m and n in the query structure, dyen? ¢ is the predicted
distance between residue m and # in the template structure, GapPenalty = 1, ali means the length of alignment, and

6(m,n) = {(1)' Zsind n are not 99p. (—MAE(j)) and a(—MAE (j)) are the average and standard deviation of the

MAE scores across all templates for the j-th program, respectively.
Zscore™O(i, j) = CMO.)) (C_MO(]»
a(CMO()))

N(Overlap(CMauery  cpMmtemplatey)
N(CMquery)

where N (Overlap(CMI4ery, CMtemplatey) is the number of overlapping contacts between the predicted contact map

and the contact map derived from the aligned template, and N(CM9“¢™) is the number of predicted contacts.

(CMO(j)) and 0(CMO(j)) are the mean and standard deviation of the contact overlap scores across all templates for

the j-th program, respectively.

(54)

CMO(i,)) =

(55)

HBscore(i,j) — (HBscore(j))

7 HB(j i) = S6
score™ (i, j) o(HBscore(j)) (56)
ali
HBscore(i,j) = Z S7
A e i R e i T
1+( g )
where 67" is the predicted hydrogen bond angle between residue m and 7 in the query structure, Gpen? ** is the

predicted hydrogen bond angle between residue m and » in the template structure, and 6 = 15. (HBscore(j)) and
o(HBscore(j)) are the average and standard deviation of the alignment scores across all templates for the j-th
program, respectively.
SN =GN
prof (j iy = —od? — WU/
Zscore (i, ) ) (58)
where S(i, j) is the alignment score of the i-th template for the j-th program, and (S(j)) and g(S(j)) are the average
and standard deviation of the alignment scores across all templates for the j-th program, respectively.



Text S4. Five contact predictors used in D-I-TASSER

In addition to contact predictions from AttentionPotential and DeepPotential, D-I-TASSER also utilizes contact
map information from TripletRes'6, ResTriplet!’, ResPRE'®, ResPLM'’, and NeBcon!®, the methods of which are
outlined below.

TripletRes (https://zhanggroup.org/TripletRes)!® is a recently developed contact map predictor, which we used
in CASP13. It is noteworthy that the TripletRes method was ranked as the top contact predictor in the CASP13
experiment?’. Starting from multiple sequence alignments created by DeepMSA2 (see “Text S2”), three co-
evolutionary features are extracted and then ensembled directly by residual neural networks. Each input feature is fed
into a set of residual blocks and transformed into the output feature with 64 channels. The three output features are
concatenated along the channel dimension as the input of the last layers. The last set of layers try to learn patterns
from the three transformed features using another 12 residual blocks. All residual blocks have a channel size of 64,
and the kernel size of the convolutional layers is set to 3 X 3 with a padding size equal to one. Such a padding
parameter set-up can keep the spatial information fixed through different layers. Here, we use a convolutional layer
with a 1 X1 kernel size to transform each co-evolutionary input feature and the concatenated features into 64 channels.
The final contact map prediction is obtained by a sigmoid activation function.

ResTriplet!” is another recent contact map predictor, which we used in CASP13. ResTriplet is a two-stage
ensemble model that uses a stacking strategy. In Stage I, three individual base models are trained separately based on
the three different sets of co-evolutionary features, PRE, PLM and COV, respectively as described above. The base
models have the same training data and the same neural network structure consisting of 22 residual basic blocks. In
Stage II, we use a shallow neural network structure to combine the predictions of the base models from Stage I. Thus,
the predicted contact maps from the base models are considered as the input features in Stage II. To reduce the risk of
over-fitting, predicted contact maps produced by each base model are generated by 10-fold cross-validation as the
input features of Stage II. The predicted secondary structures, denoted as PSS, obtained using PSIPRED?! are also
adopted as an extra feature for the neural network model in Stage II. For shallow convolutional neural networks, the
size of the receptive fields is usually limited. Hence, a dilated convolutional neural network structure with dilation
equal to 2 is employed in order to enlarge the size of the receptive fields.

ResPRE (https://zhanggroup.org/ResPRE)!® is a novel in-house contact map predictor, which consists of two
consecutive steps of precision matrix-based feature generation and deep residual neural network-based contact
inference. ResPRE is the average ensemble of ten base models trained by different subsets of the whole training data.

ResPLM' is another contact map predictor similar to ResPRE. The only difference is that ResPLM was trained
using the PLM feature.

NeBcon (https://zhanggroup.org/NeBceon)'? is a meta-approach designed for contact map prediction. In this study,
we retrained NeBcon to improve its long-range contact prediction precision by using the a naive Bayes classifier
(NBC) to integrate eight state-of-the-art contact prediction methods, including four deep learning-based methods:
DeepPLM'", DeepCov?, Deepcontact®®, and DNCON2?*, three co-evolution-based methods: GREMLIN%,
CCMpred?, and FreeContact?’, and one meta-server-based methods MetaPSICOV22%. NeBcon has two variants,
NeBconA and NeBconB, designed for C,and Cp atoms, respectively.

Text SS. D-I-TASSER force field E-groups2-7
E-Group2: Template-based restraints

Four types of restraints have been derived from the LOMETS3 templates and used to guide the D-I-TASSER
simulations.

Template-based short-range distance restraints. This energy term considers only the short-range interactions
which occur for [i-j|<<6 for the i-th and j-th residues of the model.

L—1 i+6
pshort _ Z Z Bt (dyy) (S9)
i=1 J>t
1 if |dy —dfj| > of]
gShort(q :{ Y Y K >0
dist ( U) 0, otherwise ( )

where d;; is the Cq distance between the i-th and j-th residues of the model. diTj and 05 are the average and the mean
square deviation of the C, distances, respectively, between the i-th and j-th residues that are collected from the
threading templates.

Template-based long-range distance restraints. This energy term considers only the long-range interactions for
|i-j|>6 for the i-th and j-th residues of the model.
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S12
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where d;; is the C. distance between the i-th and j-th residues of the model. d is the average of the C. distances
between the i-th and j-th residues collected from the threading templates.

Template-based contact restraints for C,. This energy term considers the contact information corresponding to
C. atoms, which is extracted from the templates

B =y Y EEG(dy) (s13)
J

U;;, ifd; <6.5A
ECa (4. = { ijs ij S14
Twn( Y ) 0, otherwise ( )
1+ 4 * |confs* — confSi|, if conf§* > confSs (515)
u 1—2+% |conﬁ —con Cut| otherwise

where d;; is the Cq distance between the i-th and j-th residues of the model; con ﬁ is the contact confidence score

for the i- th and j-th C, atoms of the model, where the confidence scores are based on the threading results; confS% is

the pre-tuned cut-off value for the contact confidence score for Cq atoms, which is query type-dependent.
Template-based contact restraints for the center of side-group heavy atoms (SG). This energy term considers

the contact information corresponding to the center of side-group heavy atoms, which is extracted from the templates.

Bon=) D B (516)

—use, dif < d3S.(AA;, A4))
dss — (dﬁﬁt(AAi,AAj) + D)
1 Y 2
—— U |1 —sin m ||, d55 (AA;, AA;) < dff <D
27U — d3%.(AA;, A4)) (A4 A%;)
Bféon(d) = G179
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7] U e M I | D < djj’ <80A
2 U (80 — D) Y
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(S18)

sG - $G
sc {1 + 4+ [conf5¢ — conf3|, if confi¢ > confs
ij =

1 -2 |conf3® — confsi|, otherwise

where dis % is the distance between the i-th and j-th centers of the side-group heavy atoms in the model; confls @ is the
contact confidence score for the i-th and j-th pseudo side-group heavy atoms in the model, where the confidence scores
are based on the threading results; conf<% is the pre-tuned cut-off value for the contact confidence score for the
centers of the side-group heavy atoms, which is query type-dependent. D = 2 + d3,(AA;, A4;) , where
ase, (AAl-, AA]-) is an amino acid type-dependent cut-off value for the center of side-group heavy atoms.

E-Group3: Burial interaction restraints
This potential represents the general propensity of amino acids to be buried or exposed to the solvent.

EfSia = = ) B, Yo%) * P(ASA) (519)
xX; — x.)?2 —v) (z;—2z.)2
E(x, y, ;) = min(0.max(-1, (x; k c) +(yl 2yc) +( i c) 2.5) (520)
Xo Yo Zy

where P(ASA;) is the accessible surface (ASA) of the i-th residue predicted through PSSpred?®. If the i-th residue is
predicted as buried, the value of P(AS4;) is made negative. (x;, y;, z;) is the coordinate for the center of the side-
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group heavy atoms (SG) for the i-th residue. (x,, o, Zo) is the length of the principal axes of the protein ellipsoid, and
(xc, Y., 2.) is the center of the protein ellipsoid*’.

E-Group4: Secondary structure-based restraints
Secondary structure restraints for C,. These three potential terms try to encourage local structures to form local
secondary structures, where the secondary structure information for the query protein is predicted by PSSpred .

L—4 L—4 N L-2
Egeoé = Wsecl Z lEsCeO(‘:(di,i+4) + Wsecz Z 1Esceot(:(Bu Bl+4 ) + Wsec3 Z ec(Cu Cl+2) (521)
1= 1= =1
DF; « DF;,, + DF;,, * DF;
_2 _ i i+1 2 i+3 i+4 ) lf a— helix
Ca(n. . =
Eget(diins) —2 — (DF; * DF; ., + DF;,5 * DF;.,), if B — sheet (522)
0, otherwise
DF; * DF; ; + DF; 5 * DF; - .
B L T > I if Sii44is helixand B, * B, > 0.9
E...(B,B = - - S23
sec(BuBura) —(DF; * DF;; + DF;, 3 * DF;,,), if B,* B4 < —0.3 0r B,* B,,, > 0.5 (523)
0, otherwise
_ DF, + DF,,, + DF;,, min(0.71,C, = C
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0.71

2
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where (x;, ¥;, Z;) is the coordinate for the Cu atom of the i-th residue. (x,, o, Zo) is the length of the principal axes of
the protein ellipsoid, and (x,, y,, z.) is the center of the protein ellipsoid. 2.2 * L3 is the estimated radius of gyration
for a protein with length L.

For the first term, the conditions for forming an a — helix include: d;; , < 7.534,4A < dijiz < 84, FL *
U,;,<0,U, ;4 * U, 3<0, 7 * m > 0, and the local segment S, ;3 is not predicted to be a sheet. Here, 7 is the unit
vector starting from the i-th Cq atom and pointing to the (z+1) th Co atom. The conditions for forming (3-sheets include:

Bi11*B Bis1*Bisz
diira > 114, arccos% < 45°, arccos% > 135°, and the local segment Si+1 i+3 1s not predicted
L+1 1+3 l+1 1+2

Uit . The second term

to be a helix. BLJr1 is the hydrogen bond direction of the (i+1)-th residue, which is equal to -2

[UxUpgal’

Ui—1-U,

[

focuses on the direction of the hydrogen bond Bl, while the third term concerns Cl, which is equal to ——

Wsec1 Wsecz, Wsecs are the weights used to balance each energy term.
Penalty for crumpling structures. This potential term imposes a penalty to the irregular crumpled structures.

L-8
Ecrumpling = . Ecrumpling (l) (526)

. _—
1, "f Ul.,l+4- ) Ul+4-,l+8 <0, Ul+4,l+8 ) Ul+8,l+12 < 0and Ul,l+4 ) Ul+8,l+12 >0
0, otherwise

Ecrumpling (l) = { (SZ 7)
where U—l; is the unit vector starting from the i-th Co atom and pointing to the j-th Cq atom.

Alpha/beta fragment restraints. This potential encourages the continuous alpha/beta fragments for secondary
structures.

B =Y L (528)
i=
|diiv7 —10.5|,  if Siiys is helix
ELS9 () = 3 |diiwe — 19.1] * 2, if Sy 46 is sheet (529)
0, otherwise

E-GroupS5: Statistical pairwise potentials
Co-SG pairwise potential. This potential is used for atomic packing and solvation between Cq atom and side-
group heavy atoms.



i j#i
n ’ 1 Ca—5SG
dCa——SG ——,lfT1<da <n
ECe-S6 = v S31
pair —3\1 Ca- SG ( )
> if d <n
0, otherwzse

where df*~¢ is the distance between the Cq atom of the i-th residue and the center of the side-group heavy atoms for
the j-th residue. 7;=3.14A and r,=5.22A.
SG-SG pairwise potential. This potential is used for atomic packing and solvation between side-group heavy

atoms.
L L
Egng = Z Z Eggir (diS]'G (532)
ES
g (@) =1V 5 if dif < a3 (AAy A4)) $33
palr( [ ( )
0, otherwise

where dis]_c is the distance between the i-th and j-th centers of the side-group heavy atoms in the model; d3¢, (AAi, AA j)

is an amino acid type-dependent cut-off value for dis]_c. U{?]-Ti is the generic orientation-dependent contact potential
derived from 6,500 non-redundant high-resolution PDB structures 3!, and the contacts are weighted by the sum of the
BLOSUM * mutation score between the residue pairs of the query and the PDB structures over a window of +5
neighboring residues. This potential is query sequence specific but an alignment between the query and the PDB
structure is not needed since we count all the contact pairs in the PDB structures that have the same amino acid identity
(AL-, A]-) to the query, where A; and 4; are the amino acid identities of the residues.

Parallel Co-C. pairwise potential. This potential is used for atomic packing and solvation between parallel Cq
atoms.

L-i L
ESe = Z Z ES%(dy)) (S34)
T j>i
| r? AN
Eg“(dij) _ min (0, W E), Lf C * CJ > 0.5 (535)
0, otherwise

Here, ,=4.77A. a * FJ > 0.5 indicates that the i-th Cy vector, Ul, and the j-th Cq vector, U are parallel where U is

the unit vector starting from the i-th Cq atom and pointing to the (i+1)-th C« atom, and Cl = Zl L L as shown in Eq.

[U1=1- 1I
18.
Non-parallel Co-Co. pairwise potential. This potential is used for atomic packing and solvation between non-
parallel Cq atoms.

L-i L
EGE = > EH(dy) (536)
ioj>i
2
B ifT+C <05, dy; <5A
Eff(dy) =] @ "2 T Or =0 (S37)
0, otherwise

Here, 1,=3.48A. a * FJ < 0.5 indicates that the i-th C. vector, Ul, and the j-th Cq vector, 7], are not parallel.

E-Group6: Hydrogen bond restraints
The hydrogen bonds in D-I-TASSER are specified by the backbone geometry following the STRIDE secondary
structure assignments.
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where CC = C, * F], BB =B, * §J, bri = |£ﬁ; — 7| and brj = |£ﬁ; — 7. Here, £=5.0A or 4.6A if both donor and
receptor residues are predicted as o — helices or § — sheets. Similarly, wyg = 1 if both donor and receptor residues
are predicted as a — helices and f — sheets; otherwise wyz = 0.5. The cutoff parameters for standard hydrogen
bonds (CC,, BB,, bry) were calculated from an average of 500 high resolution PDB structures with their secondary
structure elements assigned by STRIDE *.

E-Group7: Statistical restraints from the PDB library
Short-range correlation restraints. This type of potential considers the short-range C, distance correlation
between residues. It includes three energy terms as follows.
L-2
Ee = mez_ corr (A4, A4z, bin(dy i)

i=

L-3
+Wcorrzz corr(AA; 1, Az, bin(d;43), €, Sivii43)

i=1
L-4
PWeorrs ) €O (AA iy Ay bin(diiea), Sivsins) (540)
The first term corr (AAL-, AA; o, bin(di,i”)) is the short-range C. distance correlation between the i-th and the (i+2)-
th residues, which comes from a look-up table. d; ;., is the Ca distance between the i-th and (i+2)-th residues of the
model.  bin(d;;y,) indicates that d;;;, <6.03 or that d;;;, =603 . The second term
corr(AAi 1,444, bin(di’i+3), i Si+1'i+3) is from a look-up table for short-range C. distance correlation between
the i-th and the (i+3)-th residues. d; ;5 is the Cq distance between i-th and (i+3)-th residues of the model. bin(d; ;. 3)
indicates that d; ;5 € (0, 1A], (1A, 2A], -+, or (114, =0]. ¢; denotes the local structure chirality of three consecutive
Co-Cq vectors from the i-th to (i+3)-th residue. S;,1 ;13 denotes that the local segment from the i-th to (i+3)-th residue
is an alpha-helix, beta-sheet or coil. The third term corr(AAHl, AA; s, bin(di,i+4), Si+1,i+3) also comes from a look-
up table for correlation between the i-th and the (i+4)-th residues. d; ;4 is the Cq distance between the i-th and (i+4)-
th residues of the model. bin(d; ;) indicates that d; ;,, € (0, 1A], (1A, 2A], =+, or (154, %°]. Weorr1, Weorrzs Weorrs
are the weights used to balance each energy term.

Binary excluded volume restraints. This potential considers the general excluded volume interactions, which are
represented by a smaller hard-sphere potential plus a 1/r type of soft-core potential with a slightly larger range. This
mimics the minimal observed cutoff distance in real proteins, and allows a few atoms to approach closer than is
normally observed with an accompanying penalty, thereby partly remedying the coarseness of the discrete lattice

model.

L—i L

B =) ) B4 (s41)
T j>i

C.+C > 05and dif € (dbi, (44, A4)), dhv.(AA, AA)))
E;jocl(dfjc 1, if {or C, * C] < —=0.5and df]G € ( gnrl!n(AAi,AAj), df;{}zx(AAi,AAj)) (542)
or —05<C+C < 05and df € (dly, (A4, AA), dbe. (44, 44)))
0, otherwise o
where dis]_c is the distance between the i-th and j-th centers of the side-group heavy atoms in the model. C, * €, >

0.5and d5¢ € (dP? (AA;, AA;),dP%, (AA;, AA;)) indicate that the i-th Cu vector, U,, and the j-th Cq vector, U, are
9] min ] max vl ] ]
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parallel. C, * FJ < —0.5and disjc € ( an (44, AA]-), dan. (A4, AA]-)) indicate that the i-th Cq vector, U,, and the j-
th Cq vector, U], are antiparallel. a * FJ < —0.5and diSjG € (dﬁfin (AAi,AAj), are . (AAi, AA]-)) indicate that the i-th
Cu vector, U, , and the j-th Ca vector, U] , are perpendicular. (dﬁlain (44;,A4;), dby. (A4, AA]-)) ,

(dan.(A4,, A4), dir (44, A4)))  and (7, (AA;, AA)), dbe(AA; A4)) , which  correspond  to
parallel/antiparallel/perpendicular C. vectors, are amino acid type-dependent statistical values that were extracted
from the PDB.
Statistical excluded volume restraints. This potential is the upgrade version of excluded volume restraints.
L-i L
B = ) Y EfGu(dsf (343)
T j>i
UPY(AAy, AA)), if € x G, > 05 and dif € (db%, (44, A4)), dive.. (A4, AA)))

min

ES5,,(d5) = U (AA, A4y),if C, + C, < —0.5 and df € (d;‘;{;n(AAi,AAj), dﬂ}lx(AAi,AAj)) (544)
UPe(AA; A4y if =05 < C G < 0.5 and dff € (dls, (44, AA)), b (AA;, A4)) )
0, otherwise
where UP¢ (AAL-,AAJ-), U pa(AAi, AA]-), and UP¢ (AAL-, AA]-), which correspond to parallel/antiparallel/perpendicular,
are amino acid type-dependent statistical values that were extracted from the PDB.

Separated Co-Co pairwise potential. This potential considers the Cq distance between separated residues.
L-3L-1

E.gz;xairl—s = Z Z Eg;airl—S(dij) (545)

—Corr(AAi_l, AAgyy, bin(di—z,i+2)' Si—l,i+1)
* corr(AAj_l,AA]-H,bin(d]-_z'jn),sj_l']-“),

C.+C > 05and df € (0,di, (A4, A4)))

EEX (a;) = (546)

Spairl->5

if { or C,*C, < —05and di’ € (o, d;',{;x(AAi,AA]-))
or —05 < C,+C, < 05and dF € (0, dhe, (44, 44)))

0, otherwise
where d;; is the Cq distance between the i-th and j-th residues of the model; diSjG is the distance between the i-th and

J-th centers of the side-group heavy atoms in the model. corr(AAl-_l, AA; 4, bin(di_z'i“), Si_l’iﬂ) is similar to the
description in Eq. S40.
Contact profile constraints. The potential describes the contact environment.

L
Evprof = Z Eoproy (NP, NE", N, 44)) (547)
i=
where Nipa, NF™, Nip ¢ are the number of residues that are in parallel/antiparallel/perpendicular contact with the i-th
residue. Eqprof (Nipa, N, Nipe, AA;) is the statistic value from the PDB and calculated using the negative logarithm
of the relative frequency histogram.

Contact number constraints. This potential accounts for the biases to the expected contact order and contact
number.

ENcon = |NCon - N(g:onl + |SCW - Sé.‘on| (548)

where N¢°™ is the number of contacts in a decoy structure and S€°" is the average sequence separation of the contacts.
NEO™ and SEO™ are statistical values extracted from the PDB, which are a linear function of a * L, where L is the
protein length and a is 1.5.
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Supplementary Figures

Template 4cvhA I-TASSER model I-TASSER model
TM-score=0.196 TM-score=0.302 (+contact)
TM-score=0.766

I-TASSER model I-TASSER model I-TASSER model
(+DeepPotential distance) (+DeepPotential (+DeepPotential
TM-score=0.937 +AttentionPotential distance) +AttentionPotential
TM-score=0.961 +AlphaFold2 distance)

TM-score=0.986

B Experimental structure Template or model

Fig. S1. Structural modeling of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (PDB ID: 3fpiA) using
various [-TASSER workflows. The images are shown for the superposition of the experimental structure (red) with
predicted models by (A) the best LOMETS template (PDB ID: 4cvhA); (B) I-TASSER without using deep-learning
restraints; (C) I-TASSER with contact-map prediction (C-I-TASSER); (D) I-TASSER with distance map by
DeepPotential; (E) I-TASSER with distance maps by DeepPotential and AttentionPotential; (F) [-TASSER with
distance maps by DeepPotential, AttentionPotential and AlphaFold2.
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Fig. S2. The average RMSDs between the top five models generated by D-I-TASSER and those by AlphaFold2 for
91 disordered regions lacking experimentally determined structures on the Benchmark-I dataset of 1,262 proteins.
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Fig. S3. Application of D-I-TASSER to multi-state modeling of the SARS-CoV-2 Spike protein. (A) Open and closed
states of the experimental structure for the SARS-CoV-2 Spike protein. (B) Open and closed states of the D-I-TASSER
models superposed with experimental structures for the SARS-CoV-2 Spike protein. (C) Head-to-head comparison
between TM-scores of open and closed states of the 4,362 D-I-TASSER models for the SARS-CoV-2 Spike protein.
Notably, the structure members of cluster] and cluster2 are more similar, resulting in a higher degree of point overlap,
which makes cluster] and cluster2 appear relatively "smaller" than cluster3.
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Fig. S4. The relationship between Neff'and TM-score of D-I-TASSER models on CASP15 targets. (A) Neff versus
TM-score of D-I-TASSER models on 94 CASP15 targets. (B) Two examples of orphan proteins for targets T1122-
D1 and T1131-D1 for which poor modeling performance was observed due to low-information MSAs.
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Fig. S5. Summary of the protein lengths and experimental structure coverage for the human proteome dataset of

20,596 proteins. The red bars represent the number of sequences with >90% coverage by known structures; the cyan
bars correspond to the >60% and <90% coverage; the yellow bars are for >30% and <60% coverage.
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20,595 human proteins in Uniprot
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34,968 domains in total

Fig. S6. Number of human proteins at each stage of the analysis, where each set is a subset of the previous set.
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Fig. S7. Frequency analysis of the most commonly predicted functions for 19,512 proteins in the human proteome
arising from our pipeline. The number of proteins on top 20 BP GO terms (A), CC GO terms (B), MF GO terms (C),
EC terms (D) and non-peptide ligands (E).
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Fig. S8. Statistics on human proteome dataset of 19,512 proteins. (A) The ratio of Easy and Hard targets for the
domain-level and full-chain human proteins. (B) MSA Neff value distribution for domain-level and full-chain human
proteins.

18



Query sequence

TTSQKHRDFVAEPGEKPVGFLVLKVGFLVLKVAELVLKVGFLPGRDFEPG

i

Sequence Hidden Markov Model
database database

dMSA

Jackhmmer
Raw Hits

Jacknmmer
HHblits MSA

Multiple sequence alignments generation

qMSA

Query Jackhmmer
Sequence HHblits MSA
Jackhmmer

Raw Hits
HHblits2

»[custom Database]|

HHblits3
Raw Hits.

HMMsearch

C mMSA
aMsAstage 3 | o . GMSA stage 2 dMSA stage 2
MSA MSA MSA
HMMbuitd
DS
HMMsearch
HHblits2

[
]
[
0
[
% HHblits2
[
0
[
[
0
0

Custom Database:

HMMsearch

Custom Database:

HMMsearch | HMMsearch |
HHbIits MSA HHblits MSA HHblits MSA
dMSA stage 1 dMSA stage 2 dMSA stage 3 qMSA stage 1 MSA stage 2 qMSA stage 3 qMSA stage 4 mMSA stage 1 mMSA stage 2 mMSA stage 3
MSA MSA MSA MSA ISA MSA MSA MSA MSA MSA
48 Evo blocks Ranking MSAs by the

Multiple sequence
alignments selection

!
Evoformer
Recycling (3 times)

Structure
module

AlphaFold2

predicted models’ pLDDT

Fig. S9. Schematic of the DeepMSA?2 pipeline, which contains four approaches, (A) dMSA, (B) gMSA, (C) mMSA

and (D) MSA selection.
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Fig. S10. Definition of hydrogen bonds used by D-I-TASSER.
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Fig. S11. Schematics of the modeling and simulation settings in D-I-TASSER. (A) Reduced representation of an
amino acid using a three-dimensional underlying cubic lattice system with a lattice grid of 0.87 A. Only the alpha
carbon (Cy) atom of each residue is treated explicitly. Considering the Cq of the i-th residue, Cq(7), the lattice cube is
from (-5,-5,-5) to (5,5,5). Ca(i) is located at (0,0,0). The Cq of the previous (i-1)-th residue, Ca(i-1) is located at (3,-
3,0) and the Co-Ca bond length between Ca(i-1) and Cq(i) is 3.69 A. The C, of the next (i+1)-th residue, Co(i+1), is
located at (3,4,0) and the Ca-Co bond length between Ca(i+1) and Ca(i) is 4.35 A. Additionally, the Ca-Co bond angle
is 98°. (B) Determination of the positions for the Cp atom and the center of the side-group heavy atoms. The positions
of three consecutive C, atoms are used to define a local coordinate system for the determination of the beta carbon
(Cp) (except glycine), and the center of the side-group heavy atoms (SG) (except glycme and alamne) Vl 1 is the
vector from Ca(i-1) to Cu(i), and Ul 1 1s the unit vector for Vl 1. The cross product of U, 1 and Ul, U 1 X Ul, is the
direction of the hydrogen bond (HB). (C) Conformational movements in the D-I-TASSER Monte Carlo simulations.
The cyan and red lines are the C. traces before and after the movements, respectively. There are 6 types of
conformational movements in the D-I-TASSER simulations: (1) 2-bond vector walk; (2) 3-bond vector walk; (3) 4-
bond vector walk; (4) 5-bond vector walk; (5) 6-bond vector walk; (6) N- or C-terminal random walk. (D) Illustration
of the local and global movements used during the REMC simulations. There are N replicas, which are implemented
in parallel. After every 200*L local conformational movements, where L is the protein length, a global swap movement
between each pair of neighboring replicas is attempted following the standard Metropolis criterion.
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Fig. S12. Illustrations of (A) distance and (B) hydrogen bond potentials for three different situations.
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Fig. S13. Comparison of time requirements for D-I-TASSER and AlphaFold2 on different size proteins on a dataset
of 645 proteins. Both programs were run using 10 CPUs with parallel processing, generating 5 models each. The
AlphaFold2 program was executed with default settings, including 1 ensemble, full dbs and monomer pipeline as
implemented in AlphaFold version 2.2.0. The running time reported excludes the DeepMSA?2 search time, as the speed
of large database searches is largely influenced by I/O performance. For instance, storing databases on SSD or NVMe
drives can significantly reduce search time.
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Supplementary Tables

Table S1. Comparison of modeling results by D-I-TASSER with other methods for different target types on the 1,262
benchmark dataset (Benchmark-I). P-values were calculated between TM-scores by D-I-TASSER and others using
paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a TM-score >0.5. Here, AlphaFold2
refers to version both 2.2 and 2.3.

Method Type TM-score P-value #{TM-score>0.5}

All (1,262) 0.9097 - 1239
D-I-TASSER Easy (762) 0.9359 - 759
Hard (500) 0.8698 - 480
All (1,262) 0.6062 1.73E-206 858
I-TASSER Easy (762) 0.7290 6.87E-125 713
Hard (500) 0.4191 9.66E-84 145
All (1,262) 0.6852 9.07E-207 1066
C-I-TASSER Easy (762) 0.7615 3.34E-125 737
Hard (500) 0.5688 9.83E-84 329
All (1,262) 0.8814 1.52E-137 1213

AlphaFold2
Easy (762) 0.9227 9.79E-78 757

(version 2.2)
Hard (500) 0.8185 1.11E-61 456
All (1,262) 0.8869 1.15E-117 1218

AlphaFold2
Easy (762) 0.9252 9.01E-76 760

(version 2.3)
Hard (500) 0.8286 9.25E-46 458
All (1,262) 0.8937 2.12E-121 1228

AlphaFold2
Easy (762) 0.9281 2.94E-66 759

+DeepMSA2
Hard (500) 0.8413 2.89E-56 469
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Table S2. The contributions of different spatial restraints used in I-TASSER folding simulations to the final modeling
results, compared with different versions of AlphaFold (including AlphaFold3, AlphaFold2.3, AlphaFold2.2,
AlphaFold2.1, and AlphaFold2.0) for all 500 Hard targets in our benchmark dataset (Benchmark-I). P-values were
calculated between TM-scores by D-I-TASSER and others using paired one-sided Student’s t-tests. #{TM-score >0.5}
is the number of targets with a TM-score >0.5. Here, “I-TASSER+contact” indicates the standard I-TASSER method
with contact potential used in folding simulation; “I-TASSER+DeepPotential distance+DeepMSA2” means standard
[-TASSER method with DeepPotential distance restraints used in folding simulation in combination with DeepMSA2
for MSA generation; “I-TASSER+DeepPotential+AttentionPotential distance+DeepMSA2” means standard I-
TASSER method with DeepPotential and AttentionPotential distance restraints used in folding simulation in
combination with DeepMSA2 for MSA generation; “I-TASSER+ AlphaFold2 distance+DeepMSA2” means standard
[-TASSER method with AlphaFold2 distance restraints used in folding simulation in combination with DeepMSA2
for MSA generation; “D-I-TASSER - DeepMSA2” means default D-I-TASSER method without using DeepMSA2
for MSA generation; “D-I-TASSER - pLDDT MSA ranking” means default D-I-TASSER method without pLDDT
MSA ranking step.

Method TM-score P-value  #{TM-score>(.5}
D-I-TASSER 0.8698 - 480
I-TASSER 0.4191 9.66E-84 145
-TASSER 0.5688  9.83E-84 329
+contact

g«iﬁiﬁgntial distance+DeepMSA2 0.6731 4.91E-82 393
-Ii-gils)i](z):f:ntiaHAttentionPotential distance+DeepMSA2 0.7494 7.97E-76 428
f:gl?olslgl];:ﬁdz distance+DeepMSA2 0.8571 4.47E-16 472
P])';f)‘;lsssff 0.8362  3.63E-69 471
g'iggisﬁ; ranking 0.8536  2.99E-38 476
AlphaFold3 0.8488 1.79E-07 466
AlphaFold2.3 0.8286 9.25E-46 458
AlphaFold2.2 0.8185 1.11E-61 456
AlphaFold2.1 0.8179 2.24E-62 453
AlphaFold2.0 0.8173 4.49E-63 452
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Table S3. The comparison of D-I-TASSER with different versions of AlphaFold on 176 nun-redundant Hard targets
whose structures were released after May 1, 2022. P-values were calculated between TM-scores by D-I-TASSER and
each AlphaFold program using paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a
TM-score >0.5.

Method TM-score P-value #{TM-score>0.5}
D-I-TASSER 0.8101 - 164
AlphaFold3 0.7657 1.61E-12 157
AlphaFold2.3 0.7390 2.42E-23 148
AlphaFold2.2 0.7269 5.45E-28 150
AlphaFold2.1 0.7275 4.88E-27 150
AlphaFold2.0 0.7336 1.49E-26 151

Table S4. Comparison of full-chain-level modeling results by D-I-TASSER, AlphaFold2, and
AlphaFold2+DeepMSA2 on the 230 multi-domain targets with different number of domains. P-values were calculated
between TM-scores by D-I-TASSER and AlphaFold2 using paired one-sided Student’s t-tests. #{TM-score >0.5} is
the number of targets with a TM-score >0.5.

Method Type TM-score P-value #{TM-score>0.5}
All (230) 0.7196 - 208
D-I-TASSER 2—domaif1 (167) 0.7142 - 149
3-domain (37) 0.7468 - 34
=4 domain (26) 0.7154 - 25
All (230) 0.6374 6.52E-28 193
AlphaFold2 2-domain (167) 0.6393 2.59E-19 139
(version 2.2) 3-domain (37) 0.6272 2.04E-06 30
=4 domain (26) 0.6400 5.96E-05 24
All (230) 0.6379 1.59E-31 194
AlphaFold2 2-domain (167) 0.6401 5.34E-22 140
(version 2.3) 3-domain (37) 0.6273 1.90E-06 30
=4 domain (26) 0.6386 2.41E-05 24
All (230) 0.6723 7.86E-34 198
AlphaFold2 2-domain (167) 0.6709 6.98E-24 142
+DeepMSA2 3-domain (37) 0.6842 1.43E-04 33
=4 domain (26) 0.6644 6.54E-06 23

Table S5. Comparison of domain-level modeling results between D-I-TASSER, AlphaFold2, and
AlphaFold2+DeepMSA2 on the 557 domains that came from 230 multi-domain targets. P-values were calculated
between TM-scores by D-I-TASSER and AlphaFold2 using paired one-sided Student’s t-tests. #{TM-score >0.5} is
the number of targets with a TM-score >0.5.

Method TM-score P-value #{TM-score>0.5}
D-I-TASSER 0.8577 - 536
AlphaFold2.2 0.8341 1.45E-10 529
AlphaFold2.3 0.8345 2.31E-16 530

AlphaFold2+DeepMSA2 0.8504 1.61E-06 534
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Table S6. Comparison of the structure prediction abilities of D-I-TASSER, NBIS-AF2-standard (AlphaFold2), and
Wallner group predictions on 62 Template-based modeling (TBM) and 50 Free Modeling (FM) domains from the
CASP15 experiment. P-values were calculated between TM-scores of D-I-TASSER and AlphaFold2 models using
paired one-sided Student’s t-tests. #{TM-score>0.5} is the number of predicted domains with a TM-score >0.5.

Method Domain Type TM-score P-value #{TM-score>0.5}
AllL(112) 0.878 - 106
D-I-TASSER TBM (62) 0.915 - 60
FM (50) 0.833 : 46
All(112) 0.801 9.35E-09 97
NBI&{;E:FS‘(;‘;;”" TBM (62) 0.881 3.89E-04 59
FM (50) 0.701 3.41E-06 38
AllL(112) 0.809 1.30E-05 97
Wallner TBM (62) 0.875 4.87E-04 58
EM (50) 0.726 3.16E-03 39

Table S7. Comparison of structure predictions by D-I-TASSER, NBIS-AF2-standard (AlphaFold2), and Wallner
group predictions on 55 single-domain and 22 multi-domain targets from the CASP15 experiment. P-values were
calculated between TM-scores of D-I-TASSER and AlphaFold2 models using paired one-sided Student’s t-tests.
#{TM-score>0.5} is the number of predicted proteins with a TM-score >0.5.

Method Target Type TM-score P-value #{TM-score>0.5}
All (77) 0.851 - 72
D-I-TASSER Single-domain (55) 0.893 - 52
Multi-domain (22) 0.747 - 20
NBIS-AF2-standard . All (77? 0.787 3.67E-05 64
(AlphaFold2) Slnglf:—doma.m (55) 0.870 5.30E-03 51
Multi-domain (22) 0.578 1.18E-03 13
All (77) 0.795 1.11E-03 62
Wallner Single-domain (55) 0.872 4.77E-02 49
Multi-domain (22) 0.602 4.22E-03 13
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Table S8. Results of all 132 groups (server and human) on ‘Single-domain Structure Prediction’ in CASP15. Data
were copied from the CASP15 webpage at https://predictioncenter.org/caspl5/zscores_final.cgi?formula=assessors,
in which the Group rankings are based on Assessors’ formulae, i.e., Assessor Score=1/6*(Z-scorecpt HA + Z-
scorereLLG lddt + Z-scorease) + 1/16*(Z-scoreLppt + Z-scorecap aa + Z-scoresc + Z-Scoresc eror) + 1/12%*(Z-scoremolprobity
+ Z-scoress error T Z-scorepippiff), and two Z-score thresholds (-2.0 or -0.0) were used to excluded models. The D-I-
TASSER server was registered as ‘UM-TBM’ (highlighted in bold) in the Table.

Rank Sum Avg Rank Sum Avg Rank Sum Avg Rank Sum Avg
Groups (Z>-2.0) Z-score Z-score (2>-0.0) Z-score Z-score Groups (Z>-2.0) Z-score Z-score (Z2>-0.0) Z-score Z-score
(>-2.0) (>-2.0) (>-0.0) (>-0.0) (>-2.0) (>-2.0) (>-0.0) (>-0.0)
PEZYFoldings 2 28.2448 0.3014 1 70.8310 0.6620 Bhattacharya 67 -49.9268 -0.4580 67 23.1218 0.2121
UM-TBM 1 33.4626 0.3070 2 68.5623 0.6290 Zheng 81 -121.1419 0.1524 68 22.9098 0.5091
Yang-Server 4 20.0022 0.2037 3 61.2772 0.5674 FTBiot0119 69 -76.4316 -0.7012 69 22.8312 0.2095
DFolding 3 25.8625 0.2373 4 61.0695 0.5603 Graphen_Medical 72 -82.3454 -0.1417 70 22.4165 0.3071
Yang 5 16.2255 0.1688 5 59.0136 0.5464 GinobiFold 66 -43.2247 -0.3512 71 22.2223 0.2096
McGuffin 19 2.6214 0.0240 6 49.7262 0.4562 GinobiFold-SER 65 -36.4549 -0.2710 72 21.8518 0.2081
MULTICOM 21 2.3021 0.0211 7 48.8284 0.4480 Seder2022easy 73 -83.5517 -0.7316 73 21.8495 0.2061
MULTICOM_refine 6 13.6109 0.1249 8 48.8258 0.4479 NBIS-AF2-multimer 80 -114.7135 0.0657 74 21.2860 0.4257
BAKER 11 4.3748 0.0401 9 47.9903 0.4403 Yang-Multimer 82 -122.2089 0.1287 75 21.2429 0.4721
MULTICOM_human 20 2.4662 0.0226 10 47.9002 0.4395 ESM-single-sequence 70 -77.8559 -0.4931 76 20.0903 0.2160
MULTICOM_deep 8 9.8068 0.0900 11 46.2544 0.4244 RaptorX-Multimer 85 -128.2922 -0.0065 77 19.6842 0.4374
MULTICOM_qa 9 9.4572 0.0868 12 46.2344 0.4242 Takeda-Shitaka_Lab 84 -124.3999 0.0800 78 19.1241 0.4250
MULTICOM_egnn 7 11.9136 0.1093 13 45.7611 0.4198 Seder2022hard 77 -96.8854 -0.7115 79 19.0334 0.2025
Manifold-E 34 -5.7186 -0.0525 14 45.1978 0.4147 SHT 74 -86.0486 -0.6255 80 18.2032 0.1896
Kiharalab 25 -0.9270 -0.0085 15 45.1273 0.4140 Grudinin 87 -130.8786 -0.0200 81 16.7652 0.3810
MUFold H 12 42297 0.0388 16 44.2540 0.4060 Agemo 76 -90.3782 -0.8292 82 16.1139 0.1478
ColabFold 10 4.9637 0.0455 17 44.0177 0.4038 DFolding-refine 75 -89.0381 -0.7834 83 14.5185 0.1370
colabfold_human 18 2.9425 0.0270 18 43.2644 0.3969 EMBER3D 88 -132.7949 -1.0739 84 13.8847 0.1509
Wallner 14 4.0416 0.0371 19 43.1163 0.3956 CoDock 89 -135.5668 -0.2461 85 12.3283 0.2623
Asclepius 26 -1.5361 0.0043 20 43.0518 0.3986 QUIC 79 -110.2350 -0.9537 86 11.2555 0.1093
bench 16 3.7085 0.0529 21 42.8291 0.3966 PICNIC 86 -129.3268 -1.1307 87 10.7159 0.1051
Manifold 39 -6.4946 -0.0596 22 42.8201 0.3928 Pierce 98 -169.8130 -0.2153 88 10.5512 0.3908
DFolding-server 13 4.0592 0.0372 23 41.9520 0.3849 RostlabUeFOFold 92 -155.9174 -1.2429 89 9.2273 0.1125
Elofsson 59 -23.6888 0.1121 24 41.7392 0.4537 Shen-CAPRI 94 -160.2618 -0.3018 90 8.4582 0.2488
MUFold 15 3.8458 0.0353 25 40.9513 0.3757 UNRES 78 -105.8942 -0.9116 91 8.1109 0.0787
RaptorX 17 2.9560 0.0271 26 40.5804 0.3723 Zou 95 -160.8293 -0.6056 92 8.0372 0.1960
Agemo_mix 32 -4.2573 -0.0391 27 40.4984 0.3715 WL_team 83 -123.6216 -0.9852 93 8.0090 0.0861
ShanghaiTech 47 -11.8306 -0.1085 28 40.1253 0.3681 wugqi 91 -143.2171 -1.1404 94 7.7618 0.0892
UltraFold_Server 22 1.0805 0.0099 29 40.0715 0.3676 ClusPro 100 -174.4625 -0.9634 95 5.6107 0.1336
UltraFold 30 -3.9657 0.0003 30 39.7243 0.3713 Fernandez-Recio 102 -181.0940 -0.9145 96 5.1969 0.1528
BIIL 44 -10.2095 0.0372 31 38.2788 0.3753 TB_model_prediction 109 -191.2786 0.0555 97 5.1589 0.3968
GuijunLab-DeepDA 23 -0.4924 -0.0045 32 38.2400 0.3508 Alchemy LIG2 113 -194.8586 -0.2199 98 4.5994 0.3538
BeijingAlProtein 49 -12.5932 -0.0058 33 38.0237 0.3692 Alchemy LIG 113 -194.8586 -0.2199 98 4.5994 0.3538
ChaePred 33 -5.5144 -0.0142 34 37.9319 0.3545 Alchemy LIG3 112 -194.8543 -0.2196 100 4.5960 0.3535
Shennong 28 -2.8649 0.0489 35 37.3845 0.3560 Panlab 90 -143.0865 -1.3127 101 4.3993 0.0404
MultiFOLD 48 -12.1034 -0.1110 36 36.6712 0.3364 Manifold-X 107 -189.7355 -0.4298 102 4.2898 0.2383
GuijunLab-Assembly 27 -2.6529 -0.0243 37 36.4567 0.3345 DELCLAB 93 -157.8925 -1.3803 103 3.8920 0.0401
GuijunLab-Human 36 -6.2358 -0.0209 38 36.2609 0.3389 Kozakov-Vajda 106 -188.8308 -0.9582 104 3.8780 0.1385
Kiharalab_Server 43 -10.1914 -0.0935 39 36.0746 0.3310 ACOMPMOD 111 -193.4552 -1.6853 105 3.7334 0.0479
server_124 40 -6.7143 -0.0616 40 35.8061 0.3285 SHORTLE 101 -174.8588 -1.1541 106 3.6861 0.0723
GuijunLab-Threader 31 -4.1330 -0.0379 41 35.6270 0.3269 TensorLab 116 -198.8770 -0.2615 107 3.5494 0.3227
hFold_human 24 -0.8240 -0.0076 42 35.1927 0.3229 Pan_Server 96 -164.4871 -1.4855 108 2.9232 0.0281
BAKER-SERVER 52 -14.2912 -0.1311 43 35.1349 0.3223 Manifold-LC-E 115 -196.1421 -0.5428 109 2.8952 0.1930
hFold 35 -5.7866 0.0020 44 35.0783 0.3309 Convex-PL 120 -206.2240 -0.0373 110 2.6877 0.4479
NBIS-AF2-standard 29 -2.8881 -0.0265 45 34.6335 0.3177 UTMB 119 -205.8203 0.0299 111 2.5274 0.4212
IntFOLD7 57 -20.4751 -0.1878 46 34.4688 0.3162 FALCON2 104 -182.3897 -1.6672 112 2.4164 0.0226
hks1988 38 -6.4477 -0.0592 47 34.4345 0.3159 FALCONO 103 -182.1541 -1.6650 113 2.4086 0.0225
DMP 64 -36.1319 -0.1055 48 34.0681 0.3549 noxelis 123 -207.4929 0.1014 114 2.4028 0.4806
FoldEver 42 -9.9724 -0.0915 49 33.8486 0.3105 KORP-PL 118 -204.0169 -0.2521 115 2.3884 0.2985
GuijunLab-Meta 37 -6.2794 -0.0213 50 33.6273 0.3143 MESHI_server 99 -172.4795 -1.4010 116 2.3765 0.0313
AP_1 51 -14.1961 -0.1302 51 33.5073 0.3074 MESHI 97 -165.2689 -1.2467 117 2.1919 0.0313
server 122 45 -10.4840 -0.0962 52 33.4822 0.3072 ddquest 122 -207.4390 0.1122 118 2.1296 0.4259
OpenFold 55 -19.6548 -0.1635 53 33.2518 0.3079 Convex-PL-R 121 -207.0127 -0.1688 119 1.9614 0.3269
server_125 46 -10.9894 -0.1008 54 33.0675 0.3034 zax 124 -209.0193 -0.8774 120 1.4544 0.1818
OpenFold-SingleSeq 56 -19.8857 -0.1656 55 32.9778 0.3054 Gonglab-THU 108 -190.9123 -1.7515 121 1.4451 0.0133
server 123 50 -13.1209 -0.1204 56 32.9353 0.3022 bio3d 129 -214.0009 -0.0005 122 1.2791 0.6396
FoldEver-Hybrid 58 -22.2976 -0.0624 57 32.9350 0.3261 MeilerLab 125 -211.5698 0.1434 123 1.2702 0.4234
server_126 41 -8.4517 -0.0775 58 32.8951 0.3018 Cerebra 110 -192.3969 -1.7651 124 1.0310 0.0095
Venclovas 71 -78.8584 -0.1197 59 32.2406 0.4357 Spider 117 -200.0590 -1.4563 125 0.9318 0.0282
ManiFold-serv 53 -14.4926 -0.1330 60 30.3083 0.2781 FEIGLAB 126 -212.2364 -0.0788 126 0.7872 0.2624
TRFold 60 -27.0165 -0.2316 61 29.4315 0.2725 BhageerathH-Pro 105 -185.0512 -1.6801 127 0.6974 0.0068
GuijunLab-RocketX 54 -15.7410 -0.1272 62 29.3099 0.2714 Sun_Tsinghua 127 -213.0850 -1.7766 128 0.6866 0.0312
trComplex 61 -28.1287 -0.2419 63 29.2205 0.2706 PerezLab_Gators 128 -213.5777 -0.5259 129 0.2630 0.0877
XRC_VU 68 -61.0768 -0.0385 64 26.1843 0.3273 CSRC_ICM 132 -217.1089 -1.1089 130 0.2540 0.2540
ShanghaiTech-TS-SER 62 -32.4376 -0.2327 65 26.0202 0.2478 coco 130 -215.3389 -0.6695 131 0.2100 0.1050
Coqualia 63 -35.7053 -0.2472 66 24.0265 0.2310 GatorsML 131 -216.4563 -1.4854 132 0.1091 0.0364
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Table S9. Results of all 98 groups (server and human) on ‘Inter-domain Structure Prediction’ in CASP15. Data are
copied from the official CASP15 webpage at https://predictioncenter.org/caspl5/zscores_interdomain.cgi, in which
the ranking of the groups is based on the linear combination Z-score (F1) + Z-score (Jaccard score) + Z-score
(QS_best), with models having a Z-score below the tolerance threshold (-0.0) excluded. The D-I-TASSER server was

registered as ‘UM-TBM’ (highlighted in bold) in the table.

# Groups Sum Z-score Avg Z-score | # Groups Sum Z-score Avg Z-score

(>-0.0) (>-0.0) (>-0.0) (>-0.0)
1 UM-TBM 35.5277 1.7764 | 50  Kiharalab 5.4940 0.2747
2 Yang-Server 24.9602 1.2480 | 51 MULTICOM._deep 5.4897 0.2889
3 Yang 19.7115 0.9856 | 52 Seder2022easy 5.3198 0.2800
4 PEZYFoldings 18.0578 1.2039 | 53 GuijunLab-DeepDA 4.8945 0.2576
5 Manifold 14.9308 0.7858 | 54 XRC_VU 4.8243 0.6892
6 Venclovas 14.5386 0.7652 | 55 ColabFold 4.7985 0.2399
7 server_124 14.0810 0.7040 | 56 colabfold_human 4.7985 0.2399
8 DFolding 13.1098 0.6555 | 57 GuijunLab-Assembly 4.3734 0.2302
9 bench 12.0811 0.6041 | 58 Wallner 4.1617 0.2312
10  BAKER-SERVER 12.0030 0.6002 | 59  FoldEver 3.9173 0.2062
11 Manifold-E 11.6732 0.6144 1 60 MULTICOM 3.9011 0.2167
12 DFolding-server 11.5870 0.6098 | 61 MULTICOM_human 3.6862 0.2048
13 server_126 10.9291 0.5465 | 62  GuijunLab-Meta 3.6577 0.1925
14 Shennong 10.1011 0.5051 | 63 MULTICOM_qa 3.5934 0.1797
15 RaptorX 9.3845 0.4692 | 64 GuijunLab-Human 3.4694 0.1826
16  IntFOLD7 9.0429 0.4759 | 65 FoldEver-Hybrid 3.3126 0.2366
17 BAKER 8.8620 0.4431 | 66 ~ MULTICOM_egnn 3.1465 0.1573
18 server 123 8.5973 0.4299 | 67  GinobiFold 2.7459 0.1615
19 Asclepius 8.5891 0.4521 | 68 Coqualia 2.7459 0.1615
20  MultiFOLD 8.2488 0.4583 1 69  Cerebra 2.5507 0.1500
21 DFolding-refine 8.1694 0.4300 | 70  MUFold 2.4377 0.1219
22 BIIL 8.0841 0.4491 | 71 GuijunLab-RocketX 2.4240 0.1276
23 DMP 7.7417 0.5530 | 72 GuijunLab-Threader 2.4147 0.1342
24  MUFold H 7.5603 0.3780 | 73 Bhattacharya 2.3720 0.1248
25 hFold 7.1212 0.4451 | 74 SHT 2.2983 0.1149
26 OpenFold-SingleSeq 7.0733 0.3723 1 75 BhageerathH-Pro 2.2781 0.1627
27  OpenFold 7.0733 0.3723 | 76  GinobiFold-SER 2.2577 0.1411
28 ShanghaiTech 7.0584 0.3529 | 77 FALCON2 2.2265 0.1113
29  ManiFold-serv 6.9819 0.3675 | 78 FALCONO 2.2265 0.1113
30  Graphen Medical 6.8295 0.4878 | 79  hks1988 2.1535 0.1077
31 AP 1 6.8095 0.3405 | 80  NBIS-AF2-standard 2.1141 0.1057
32 Elofsson 6.6876 0.3520 | 81 Pan_Server 2.0335 0.1070
33 Agemo_mix 6.6477 0.3499 | 82  Gonglab-THU 1.8164 0.1068
34 Panlab 6.5871 0.3294 | 83 DELCLAB 1.1885 0.0660
35 McGuftin 6.5509 0.3448 | 84 ESM-single-sequence 1.1811 0.1312
36  TRFold 6.4502 0.3794 | 85  UNRES 1.1657 0.0833
37  MULTICOM._refine 6.4210 0.3379 | 86  QUIC 1.1187 0.0559
38 server 122 6.1989 0.3099 | 87  PICNIC 1.1002 0.0550
39  BeijingAlProtein 6.1858 0.3639 | 88 ShanghaiTech-TS-SER 0.8613 0.0538
40  UltraFold 6.1858 0.3639 | 89 Seder2022hard 0.5910 0.0591
41 UltraFold_Server 6.1858 0.3437 | 90 SHORTLE 0.5900 0.5900
42 server_125 6.0672 0.3034 | 91 wugqi 0.4176 0.0464
43 Agemo 5.9827 0.3519 | 92 MESHI server 0.1894 0.0947
44  FTBiot0119 5.9501 0.2975 | 93 EMBER3D 0.1591 0.0159
45 ChaePred 5.7616 0.2881 | 94  Manifold-LC-E 0.0809 0.0809
46 WL _team 5.7417 0.3022 | 95 Manifold-X 0.0809 0.0809
47 Kiharalab_Server 5.7358 0.2868 | 96 RostlabUeFOFold 0.0346 0.0087
48 trComplex 5.6135 0.3302 | 97  MESHI 0.0000 0.0000
49  hFold human 5.5688 0.3094 1 98  ACOMPMOD 0.0000 0.0000
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Table S10. The comparison of D-I-TASSER with different versions of AlphaFold (including AlphaFold3,
AlphaFold2.3, AlphaFold2.2, AlphaFold2.1, and AlphaFold2.0) on 50 Free Modeling (FM) domains and 22 multi-
domain targets from the CASP15 experiment. P-values were calculated between TM-scores by D-I-TASSER and
others using paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a TM-score >0.5.

Method Target Type TM-score P-value #{TM-score>0.5}
DITASSER O 20) 07410 : s
AlphaFold2.0 Multfgf)rfa?zl (20) ggégg éggg:gg ?;
AlphaFold2.1 Multiligf)rfa?zl (20) gg;ég 22?%:82 ?13
AlphaFold2.2 Multiligf)rfa?zl (20) gg;}é g;gg:gg ?;
AlphaFold2.3 Multf gfﬁa(gl (20) g;ég(z) éggg:gg ?g

AIphaFold3 i domin 20) o608 3 00E-02 i

Table S11. The structure prediction accuracy of D-I-TASSER and AlphaFold2 on 1,907 full-chain sequences from
the human genome that have experimentally solved structures. These sequences contain 1,147 cases with single-
domain and 760 cases with multi-domain structures. P-values were calculated between TM-scores of D-I-TASSER
and AlphaFold2 models using paired one-sided Student’s t-tests. #{TM-score>0.5} is the number of predicted proteins
with a TM-score >0.5.

Method Target Type TM-score P-value #{TM-score>0.5}
All (1,907) 0.931 - 1,872
D-I-TASSER Single-domain (1,147) 0.918 - 1,119
Multi-domain (760) 0.951 - 753
All (1,907) 0.916 3.17E-130 1,865
AlphaFold2 Single-domain (1,147) 0.903 5.69E-84 1,113
Multi-domain (760) 0.935 1.07E-47 752

Table S12. The results are the same as shown in Table S9, but the 1,907 proteins are categorized into two categories
of ‘Easy-zone’ and ‘Hard-zone’ based on the D-I-TASSER and AlpahFold2 results. The ‘Easy-zone’ targets refer to
those for which both D-I-TASSER and AlphaFold2 can achieve a TM-score >0.8, while the ‘Hard-zone’ targets are
those for which at least one method performs poorly with a TM-score <0.8. P-values were calculated between TM-
scores of D-I-TASSER and AlphaFold2 models using paired one-sided Student’s t-tests. #{TM-score>0.5} is the
number of predicted proteins with a TM-score >0.5.

Method Target Type TM-score P-value #{TM-score>0.5}
All (1,907) 0.931 - 1,872
D-I-TASSER Easy-zone (1,659) 0.966 - 1,659
Hard-zone (248) 0.699 - 213
All (1,907) 0.916 3.17E-130 1,865
AlphaFold2 Easy-zone (1,659) 0.958 2.47E-97 1,659
Hard-zone (248) 0.633 1.17E-26 206
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Table S13. Statistical summary of the top 20 most abundant prediction results for ligand-binding interactions, EC
terms, and GO terms (BP, CC, and MF) for foldable full-chain human proteins. #{protein} is the number of proteins
with the corresponding labels.

Type 1D Name #{protein}
ANP ADENYLYL IMIDODIPHOSPHATE 308
FES DI-MU-SULFIDO-DIIRON 306
F3S TRI-MU-SULFIDO-MU3-SULFIDO-TRIIRON 228
ADP ADENOSINE 5'-DIPHOSPHATE 226
CA CALCIUM 222
RET RETINAL 212
SF4 TETRA-MU3-SULFIDO-TETRAIRON 204
QNA I~{A}~{R},7~{B}~{S})-5-FLUORANYL-2,2-BIS(OXIDANYL)- 203

1~{A},7~{B}-DIHYDRO-1~{H}-CYCLOPROPA[C][,
2]BENZOXABORININE-4-CARBOXYLIC ACID

Ligand- CLR CHOLESTEROL 164
binding HEM PROTOHEME 147
ATP ADENOSINE-5'-TRIPHOSPHATE 131
FAD FLAVIN ADENINE DINUCLEOTIDE 126
GDP GUANOSINE-5'-DIPHOSPHATE 123
GNP PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER 115
ZN ZINC ION 109
NA SODIUM ION 108
NAD NICOTINAMIDE-ADENINE-DINUCLEOTIDE 104
FMN FLAVIN MONONUCLEOTIDE 98
NAP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE 90
PTY PHOSPHATIDYLETHANOLAMINE 82
3.2.1.17 Lysozyme 426
2.7.7.6 DNA-directed RNA polymerase 338
1.17.1.4 Xanthine dehydrogenase 335
2.3.1.86 Fatty-acyl-CoA synthase 295
3.4.24.69 Bontoxilysin 289
1.17.3.2 Xanthine oxidase 280
2.7.11.1 Non-specific serine/threonine protein kinase 258
1.4.1.13 Glutamate synthase (NADPH) 233
2.3.1.85 Fatty-acid synthase 167
EC 1.4.7.1 Glutamate synthase (ferredoxin) 162
3.2.1.18 Exo-alpha-sialidase 160
1.9.3.1 Cytochrome-c oxidase 150
4322 Adenylosuccinate lyase 150
3.6.5.2 Small monomeric GTPase 148
2.7.7.7 DNA-directed DNA polymerase 142
4212 Fumarate hydratase 138
3.2.1.97 Endo-alpha-N-acetylgalactosaminidase 125
3.2.141 Pullulanase 122
2.7.10.1 Receptor protein-tyrosine kinase 116
4.3.2.1 Argininosuccinate lyase 103
GO:0055114  oxidation-reduction process 1,026
GO0:0043547  positive regulation of GTPase activity 772
GO0:0030335  positive regulation of cell migration 687
BP GO:0009612  response to mechanical stimulus 678
GO0:0098542  defense response to other organism 628
GO:0097305 response to alcohol 616
GO:0019058  wviral life cycle 589
GO:0007601  visual perception 584
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GO:0007613 memory 577
G0:0044248  cellular catabolic process 573
GO0:0018298  protein-chromophore linkage 572
GO:0050806 positive regulation of synaptic transmission 568
GO:0001101  response to acid chemical 567
GO:0007612  learning 561
GO:0000302 response to reactive oxygen species 561
GO0:0050678  regulation of epithelial cell proliferation 552
GO0:0019229  regulation of vasoconstriction 551
GO:1901654  response to ketone 551
GO:0009617  response to bacterium 548
G0:1903532  positive regulation of secretion by cell 547
GO:0005829  cytosol 3,085
GO:0070062  extracellular exosome 2,362
GO:0016021  integral component of membrane 1,556
GO:0005887 integral component of plasma membrane 1,555
GO:0005886  plasma membrane 1,239
G0:0044444  cytoplasmic part 1,175
GO:0071944  cell periphery 983
GO:0005654 nucleoplasm 973
GO:0005615  extracellular space 945
cC GO:0005789  endoplasmic reticulum membrane 912
GO:0005634 nucleus 910
GO:1903561  extracellular vesicle 846
GO0:0043231 intracellular membrane-bounded organelle 814
GO:0005737  cytoplasm 801
GO0O:0000139  Golgi membrane 769
GO0:0031988 membrane-bounded vesicle 762
GO:0043005 neuron projection 703
GO0:0044424  intracellular part 666
GO0:0036477 somatodendritic compartment 637
G0O:0005911  cell-cell junction 632
GO:0046872  metal ion binding 1,754
GO:0043169  cation binding 1,490
GO0:0032550  purine ribonucleoside binding 1,432
GO0:0035639  purine ribonucleoside triphosphate binding 1,430
G0:0032559  adenyl ribonucleotide binding 1,387
GO:0005524  ATP binding 1,369
G0:0042802  identical protein binding 1,255
GO0:0042803  protein homodimerization activity 886
GO:0008092  cytoskeletal protein binding 878
MF GO:0046914  transition metal ion binding 708
GO0:0003676 nucleic acid binding 693
GO:0019842  vitamin binding 658
GO:0046983  protein dimerization activity 638
GO0:0004553  hydrolase activity, hydrolyzing O-glycosyl compounds 547
GO0:0008270  zinc ion binding 517
GO0:0044822  poly(A) RNA binding 500
GO0:0005509  calcium ion binding 493
GO:0005501  retinoid binding 463
GO:0008020  G-protein coupled photoreceptor activity 463
G0O:0005515  protein binding 453
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