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Abstract

G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular
signal transductions. Identification of therapeutic compounds to regulate physiological processes is an
important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS)
pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site
identification, followed by homologous GPCR detections through structure and orthosteric binding-site
comparisons. Ligand profiles constructed from the homologous ligand–GPCR complexes are then used to
thread through compound databases for VS. The pipeline was first tested in a large-scale retrospective
screening experiment against 224 human Class A GPCRs, where MAGELLAN achieved a median
enrichment factor (EF) of 14.38, significantly higher than that using individual ligand profiles. Next,
MAGELLAN was examined on 5 and 20 GPCRs from two public VS databases (DUD-E and GPCR-Bench)
and resulted in an average EF of 9.75 and 13.70, respectively, which compare favorably with other state-of-
the-art docking- and ligand-based methods, including AutoDock Vina (with EF = 1.48/3.16 in DUD-E and
GPCR-Bench), DOCK 6 (2.12/3.47 in DUD-E and GPCR-Bench), PoLi (2.2 in DUD-E), and FINDSITEC-
comb2.0 (2.90 in DUD-E). Detailed data analyses show that the major advantage of MAGELLAN is attributed
to the power of ligand profiling, which integrates complementary methods for ligand–GPCR interaction
recognition and thus significantly improves the coverage and sensitivity of VS models. Finally, cases studies
on opioid and motilin receptors show that new connections between functionally related GPCRs can be
visualized in the minimum spanning tree built on the similarities of predicted ligand-binding ensembles,
suggesting a novel use of MAGELLAN for GPCR deorphanization.

© 2020 Elsevier Ltd. All rights reserved.
Introduction

G protein-coupled receptors (GPCRs) are integral
membrane proteins responsible for detecting, acti-
vating, and conducting cellular signal transductions.
The malfunction of the receptors is the cause of a
wide array of diseases, such as cancer and diabetes
[1,2]. Consequently, GPCRs are among the most
clinically studied targets in drug discovery. A detailed
analysis of the DrugBank shows that 23% of the
2276 Food and Drug Administration-approved drugs
on the market, including both small molecules and
biologics, target GPCRs, while out of other 2641
r Ltd. All rights reserved.
drugs that are under some form of clinical trial, 8%
target GPCRs. Overall, GPCRs represent targets
of 15% of all drugs that are either approved or
investigational (Figure 1).
The mainstay in drug development is high-

throughput screening (HTS), a technique for biochem-
ically assaying pharmacological targets against the
candidate compounds on a large scale. However,
HTS is usually costly and laborious, whereas various
in silico approaches, which are much faster and less
expensive, have been found useful in assisting and
complementing HTS [3]. There are two general
approaches that are commonly employed in the
Journal of Molecular Biology (2020) 432, 487 –4892 0

zhng@umich.edu
https://doi.org/10.1016/j.jmb.2020.07.003
https://doi.org/10.1016/j.jmb.2020.07.003


Figure 1. DrugBank statistics for GPCRs. Percentage of small-molecule and biotech drugs shown for GPCR and non-
GPCR targets under the groups of (a) approved, (b) investigational, and (c) total drugs.
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computer-aided drug screening: ligand-based and
receptor-based virtual screening (VS). In the former,
the knowledge of what ligands the receptor targets
tend to bind with is used to develop a model for drug
screening [4,5], while the latter utilizes structural
information of the receptors to predict ligand-binding
affinity, normally through docking [6,7]. Although the
structure-based docking approaches are typically
computationally expensive and take a long time to
run through large compound libraries, they can be
useful in providing physical configuration of ligand–
receptor interactions and for producing results that
are biochemically relevant; on the other hand,
ligand-based approaches are usually very fast, but
they tend to be biased toward ligands that are
currently known [8].
Both receptor and ligand-based approaches require

some sort of information, either known active ligands or
a structure, whichmay not be available for a drug target
of interest. The orphan GPCRs are one such example,
many of which lack known endogenous ligands [9]. In
this regard, chemical genomics approaches are often
applied to infer ligand binding information, based on the
assumption that similar receptors bind similar ligands
[10]. One of the earliest applications of the idea was
with the algorithm, FINDSITE, which uses ligand
information from structurally homologous receptors
found through fold recognition in a ligand-based VS
[11,12]. Another algorithm is PoLi, which looks for
similar protein receptors by performing binding pocket
structure comparison between the target and tem-
plates, followed by a ligand-based screening search
[5].More recently, the samegroup extendedFINDSITE
to FINDSITEcomb2.0, which utilizes threading and
structure-based comparisons for template ligand se-
lections [13].
Although structure is generally considered to be

more conserved than sequence in evolution, relying
solely on structural similarity can result in achieving
a high rate of false positives in the selection of

Image of Figure 1
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functionally relevant ligands, as receptors of similar
structures often bindwith different ligands. In particular,
experimental structures are not always available for
many medically relevant target proteins, where low-
resolution models would have to be generated for the
target receptors; this would further impact the accuracy
and specificity of the structure-based ligand inferences.
This is true especially for the case of GPCR families,
which all have a roughly similar global fold (7-TM helix
bundle) but distinct helix packing and local structure at
the binding sites [14]. Moreover, the majority of the
structure-based approaches rely on selecting homolo-
gous proteins and their respective ligand sets from the
Protein Data Bank (PDB) [15]; however, pharmacolog-
ical data are often found in low quantities within the
PDB. Currently, there are many more proteins with
known pharmacological data, which are collected in
variousmanually curated chemical databases, such as
ChEMBL [16], BindingDB [17], and GLASS (for
GPCRs) [18]. Using the wealth of information from
such resources should help enhance the accuracy of
the ligand-based chemical genomics approaches.
In this study, we present a novel ligand profile-

based VS approach, MAGELLAN (standing for
Michigan G protein-coupled receptor ligand-based
virtual screen), specifically designed for GPCRs. To
enhance the reliability and robustness of a ligand-
based screening approach, multiple modules are
employed for the detection of a variety of receptor
homologies from both structure- and sequence-based
alignments, from which consensus ligand profiles, as
represented by a 2D ligand fingerprint matrix, are
created for the next step of VS. To carefully examine
the strength andweakness of the pipeline, large-scale
tests were performed on 224 representative Class A
GPCRs, which were carefully controlled with various
components. Additionally, stringent benchmarks were
performed to test MAGELLAN with other state-of-the-
art ligand and receptor-based methods (including
PoLi, FINDSITEcomb2.0 [13], AutoDock Vina [6], and
DOCK 6 [7]). Here, Class A GPCRs were selected as
the focus mainly because of the high popularity and
diversities in structure and function and the clinical
importance in drug discovery. Moreover, the con-
served transmembrane domains of these receptors
make it an ideal case for examining the sequence- and
structure-based alignment modules, which helps
increase the accuracy and specificity of the hybrid
pipeline. The MAGELLAN webserver, together with
the VS results for various human GPCRs and the
filtered ligand sets, is available and downloadable at
https://zhanglab.ccmb.med.umich.edu/MAGELLAN.
Methods

The process of MAGELLAN consists of three
consecutive stages: 1) homologous GPCR detection,
2) ligand profile construction, and 3) profile-based VS.
The flowchart of the MAGELLAN pipeline is depicted
in Figure 2, which starts with a single primary
sequence of the target GPCR in FASTA format,
where the output consists of a list of predicted ligands
bound with the target.

Library construction of ligand–GPCR associa-
tion

As the ligandprofile is a core concept inMAGELLAN,
which is derived from known GPCR complexes, a
comprehensive library of GPCR–ligand associations is
first constructed from GLASS database [18]. Here,
GLASS (GPCR-Ligand Association) database is a
manually curated repository for experimentally validat-
edGPCR–ligand interactions, with the datamined from
literature and multiple primary chemical and biological
databases, including ChEMBL [16], BindingDB [17],
PDSP Ki [19], IUPHAR [20], and DrugBank [21]. In
GLASS, only the entries with known experimental
values of Ki, Kd, IC50, and EC50 are collected. In the
cases that multiple experimental values exist for the
same GPCR–ligand pair from different studies, the
median was taken as the representative value to avoid
outliers produced from incorrect or extreme environ-
ment setting. To filter out inactive ligands, a common
threshold of 10 μM is used for both Ki and Kd values,
while a threshold of 20 μMwas set for IC50 andEC50 as
previous studies found that a Ki–IC50 conversion factor
of 2 is suitable. This relatively loose criterion could
accommodate the variability in various conditions of
assay experiments. After the filtration, the library
contains 238,108 GPCR–ligand associations attached
with 644 GPCRs.

Five modules for homologous GPCR detection

Five complementary modules, built on TM-align [22],
PPS-Align [23], BLAST [24], PSI-BLAST [25], and
BindRes [26], are developed for detecting homologous
and analogous GPCRs, where the first two are
structure-based and other three are on sequence and
sequence-profile comparisons (Figure 2). The idea of
composite model approach by combining complemen-
tary pipelines is not new and has been previously used
to improve modeling accuracy of fold recognition
[27,28] and ligand binding site predictions [29]. Here,
we extend the idea to VS and examine whether a
combination of multiple sources of information could
compensate for one another's shortcomings and
improve the overall quality of the final models. We
have selected the five modules from TM-align, PPS-
align, PSI-BLAST and BindRes, as these represent a
collection of widely used algorithms that help extract
quickly and robustly the structure, sequence and
ligand-binding information associated with the targets
GPCRs.
In the first GPCR detection module, TM-align [22]

is used to structurally match (or align) the target to

https://zhanglab.ccmb.med.umich.edu/MAGELLAN


Figure 2. The MAGELLAN pipeline for GPCR virtual screening. It consists of three consecutive stages of homologous
GPCR detection, ligand profile construction, and profile-based virtual screening.
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template GPCRs. To obtain a 3D structure model of
the GPCR, the target sequence is submitted to
GPCR-I-TASSER [30], which was designed to create
full-length receptor structures by reassembling the
structure fragments through replica-exchange Monte
Carlo simulations [31], where the structure fragments
are excited from the PDB template structures with the
target-template alignments created by LOMETS

Image of Figure 2
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[28,32], a multi-threading approach for protein fold
recognitions. The resulting structure models are then
compared by TM-align [22], a global structural
alignment method, against the GPCRs in the pre-
compiledGPCR–ligand library, inwhich the structures
of all GPCRs are pre-generated with GPCR-I-
TASSER. The TM-align based GPCR templates are
scored by

STMalign ¼ 2

1þ e− 0:2Tþ f 0:4Sþ0:3Eþ0:2Jð ÞþRð Þ2
−1: ð1Þ

Here, T ¼ 1
L
∑Lali

i
1

1þ ðd i

d0
Þ

2

is the TM-score that

measures the global structure similarity of the target
and template models [33], where L is the length of
the target sequence, Lali is the number of aligned
residues by TM-align, di is the distance of ith aligned
residue pair between target and template GPCRs,
and d0 ¼ 1:24

ffiffiffiffiffiffiffiffiffiffiffi
L−153

p
−1:8 is the scale factor. In Eq.

(1), f = m/n is the fraction of the aligned residues in
the binding pocket (m) normalized by the total
number of binding residues (n) on the GPCR
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n
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measures the evolutionary relation between
the aligned binding residues, where B(Ai

q,Ai
t)

is the BLOSUM62 mutation score;
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is the average Jensen–Shannon divergence over
the binding pocket, where pi

a is the frequency of amino
acid a at ith column of multiple sequence alignment
identified by PSI-Blast for the target GPCR and qa is
the background frequency; and R is the residue
chemical similarity of the binding site residues, where
Figure S1 in Supporting Information (SI) provides an
illustrative example for how the residue chemical
similarity was calculated. The weight parameters for
S, E, and J were taken from the qstr scoring function
from TM-SITE [29], while the weight for Twas reduced
from 1 to 0.2 compared to that used in TM-SITE to de-
emphasize the impact of the global structural similarity.
Second, PPS-Align is an algorithm recently

designed for sequence-order independent structure
alignments of binding pockets [23]. In this module,
the GPCR-I-TASSER models of target and template
GPCRs are first submitted to COACH [29] for ligand-
binding site prediction through sequence and struc-
ture profile comparisons. Following COACH, the
ligand binding pockets are determined by selecting
the binding-site predictions with the highest confi-
dence score by COACH for both target and template
GPCRs, where the structures of binding pockets are
finally aligned by PPS-Align for pocket comparisons.
The GPCR templates by PPS-align from the library
are scored by

SPPSalign ¼ 2
1þ e− PPSþ0:25Sþ0:25JþIbsð Þ−1 ð2Þ

where PPS in [0,1] is the pocket similarity score
returned by PPS-Align, S and J are the same as
defined in Eq. (1) with the weight parameters taken
from the PPS-align program, and Ibs is the sequence
identity of the binding-site residues in the PPS-align
aligned regions between target and template GPCRs.
In addition to normal compound molecules, COACH
canalsogenerate predictionon ion-binding sites,which
typically consist of far fewer residues than that of a
conventional binding pocket [29]. For example, the
delta opioid receptor has a sodium ion bound that
promotes negative allosteric effects (PDB: 4N6H) [34].
However, these sites typically have very low confi-
dence scores and thus have never been selected by
the clustering in our benchmark. Therefore, the small
ion binding from COACH predictions does not have a
detectable impact on the MAGELLAN procedure.
In the third BindRes module, we first parse the

transmembrane (TM) domains of the target GPCR
according to the UniProtKB/SwissProt annotation,
which are then aligned with the TM domains of all
template GPCRs in the library using Clustal Omega
[35]. The template GPCRs are ranked by

SBindRes ¼ 2
1þ e− IbsþRþ0:2Jð Þ−1 ð3Þ

where Ibs, R and J are defined similarly as in Eqs. (1)
and (2). The calculations focus solely on the 44
orthosteric binding site residues on the TM-domains,
as specified by Gloriam et al. [26]. Since these
orthosteric residues have been labeled in Balles-
teros–Weinstein numbering system [36], the identi-
ties can be conveniently referred through the most
conserved residue of each TM domain according to
the Clustal Omega alignments. The weight for J was
again taken from the qstr scoring function from TM-
SITE [29]. Here, the binding was purely based on
pharmacological data as extracted from the data-
bases we used in the study. Although most of the
databases do not differentiate between orthosteric
ligands and allosteric modulators, GPCR allosteric
modulators are still exceedingly uncommon and will
most likely not get crowded out over the orthosteric
ligands during the ligand clustering procedures in
MAGELLAN.
Finally, the BLAST and PSI-BLAST modules use

the programs from the NCBI BLAST+ software suite
(version 2.2.29). For BLAST, the target sequence is
matched against the GPCR templates, which are
sorted by descending sequence identity to the target.
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The same is done for PSI-BLAST but with sequence-
profile alignment, where the profiles were collected
with four iterations from the non-redundant (NR)
sequence database from NCBI under an E-value
cutoff of 0.001; the parameters we used for number of
iterations and E-value cutoff are standard values used
in most sequence alignment and threading ap-
proaches with BLAST and PSI-BLAST [37]. The
results are also ranked by descending sequence
identity. Here, it is well known that PSI-BLAST ismore
efficient than BLAST to detect distant-homology
sequences due to the adopt of sequence-profile
alignments. However, we found that BLAST can be
useful to detect complementary templates due to the
sensitivity in recognizing the similarity of local
sequence motifs, which are important to homologous
ligand detections since only the binding pocket
residues are sensitive to relevant ligand binding in
many GPCRs. Although MAGELLAN eventually
ranks the templates based on their sequence identity
to the target, the use of BLAST and PSI-BLAST in
parallel can help increase the coverage and variation
of the ligand profile as described below, due to the
complementarity of the alignment algorithms.
It is worth noting that although MAGELLAN

contains the BindRes module that focuses on the
transmembrane orthosteric binding recognitions, the
use of the MAGELLAN is not limited to screening
compounds on the transmembrane orthosteric bind-
ing sites, because other four modules do not have
such limit and a hybrid profile for all the modules
could help detect ligands bound with other regions of
GPCRs. Accordingly, the benchmark datasets used
in this study were collected from multiple databases,
which contain ligands from different binding loca-
tions, including those from both transmembrane and
loop regions. In this regard, the benchmark results
presented should reflect the overall performance of
the pipelines on the ligands across all GPCR
regions.

Ligand profile construction and profile-based VS

Associated active ligands from the ten top-ranked
GPCRs are compiled for each of the five GPCR
alignment modules. The resulting ligand collections
are then clustered with the Taylor-Butina algorithm
[38,39] using the Chemfp Python library [40], where
a Tanimoto coefficient (TC) cutoff of 0.8 was used.
Here, all ligands are originally represented as InChI
identifiers and keys, and converted into 1024-bit
Morgan fingerprints with a radius of 2 using RDKit
[41]. The 40 largest GPCR clusters are selected for
use in the next step of VS. If there are fewer than 40
clusters, all of them are used.
For a given cluster (k), a ligand profile is

constructed for the target GPCR, which is repre-
sented by a n × Nk matrix, in which Nk is the number
of non-redundant ligands in the cluster and each
ligand has n-bit fingerprints taken from the ZINC12
database where n = 1024 is the dimension of the
Morgan fingerprints (Figure 3). The score for match-
ing the profile with a compound in the library is
defined by

PrSk zð Þ ¼ 1
Nk

∑i¼1

Nk

w iT i ;z ð4Þ

where T i ;z ¼ ∑ j¼1
nb j

i b
j
z

∑ j¼1

n

b j
i b

j
i þ ∑ j¼1

n

b j
zb

j
z−∑ j¼1

n

b j
i b

j
z

is the TC between the ith ligand and the zth
compound in the database. Here, bi

j and bz
j are the

bits in the ith and the zth compounds, respectively.

wi ¼ 1
Mi

∑m¼1

Mi

SmðiÞ is the weighting factor for the

ith ligand, where Sm(i) is the scoring function of mth
alignment module as defined in Eqs. (1)–(3) and Mi
is the total number of modules that identified the ith
ligand (Figure 3).
ThePrSk(z) can be converted into a renormalizedZ-

score by Zk(z) = (PrSk(z) − μk)/σk, where μk and σk
are, respectively, the mean and standard deviation of
PrSk(z) overall all compounds in ZINC for the kth
cluster. This renormalization makes the matching
score between clusters comparable despite of the
different ligand populations in different clusters. A final
score (Sz) for zth ZINC compound is calculated by
taking the maximum Z-score among all clusters, i.e.,

S zð Þ ¼ max
k

Z k zð Þf g ð5Þ

Here, we note that there are overall three
major free parameters involved in the binding-site
clustering and ligand selection procedures, i.e., the
number of GPCRs selected from each alignment
module (=10), TC cutoff for clustering (=0.8), and
the number of clusters used for VS (=40). These free
parameters are open-ended variables in our algo-
rithm, and we optimized their values using an
independent dataset of 56 GPCRs that are non-
redundant from the test proteins reported in this
study. During the training process, the parameters
were determined by maximizing the average enrich-
ment factor (EF) of VS as defined in Eq. (7) below.
There are also parameters involved in the individual
modules where their values are mainly taken from
the original sequence and structural alignment
algorithms.

Construction of minimum spanning tree by
similarity ensemble approach

To evaluate the similarity of GPCR proteins based
on the similarity of their bound ligands, we construct
a minimum spanning tree (MST) for the targets using
the similarity ensemble approach (SEA) [42,43]. To
quantitatively assess the similarity between two
ligand sets in a statistically stringent base, we collect



Figure 3. Illustration of ligand profile that summarizes feature information of all ligands from the kth cluster. In the profile,
the horizontal index represents the ligand fingerprint bits, while the vertical index runs through all ligands. Each ligand is
assigned a weight (wi) that equals to the average alignment score of different modules that have been used to identify the
GPCR template associated with the ligand. The bottom panel indicates a compound fingerprint from the ZINC database,
with which the profile is aligned.
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multiple random ligand sets with sizes between 10
and 1000 ligands from the GLASS database and
calculate the TC-score between ligands of different
sets. It was found that the mean (μ) and standard
deviation (σ) of the TC-scores between two ligand
sets is correlated with the product of the sizes of two
ligand sets compared (s), which follows well with

μ ¼ ks

σ ¼ msr

8<
: ð6Þ

where the parameters (k, m and r) can be obtained
by linear regression fit with the data in Figure S2 in
SI. Using Eq. (6), a raw TC-score of two ligand sets
can be quantitatively converted into a size-
independent Z-score by Z = (TC − μ)/σ.
Here, only the ligand pairs with a significant TC-

score above a threshold are used in the statistical
calculation, where a TC threshold of 0.84 is found to
be optimal, which has the Z-score distribution follow
the Gumbel extreme value distribution as shown in
Figure S3. Using the Gumbel distribution data, a
BLAST-like E-value can be calculated for eachGPCR
pairs. Finally, an MST based on the significance of E-
value can be calculated usingKruskal's algorithm [44],
with the image produced with Cytoscape [45].

Online webserver construction and usage

Built on MAGELLAN, an online web server was
constructed at https://zhanglab.ccmb.med.umich.
edu/MAGELLAN, using Python CGI scripting, com-
plemented with MySQL, Javascript and PHP. The
only required input is the primary sequence for the
GPCR of interest in FASTA format. An example is
shown as follows:
Nsp.|P35372|OPRM_HUMAN Mu-type opioid re-

ceptor OS=Homo sapiens GN=OPRM1 PE = 1
SV = 2.
MDSSAAPTNASNCTDALAYSSCSPAPS

PGSWVNLSHLDGNLSDPCGPNRTDLGGRDSLC
PPTGSPSMITAITIMALYSIVCVVGLFGNFLV
M Y V I V R Y T K M K T A T N I Y I F N L A L A D A
LATSTLPFQSVNYLMGTWPFGTILCKIVISIDYYN
MFTSIFTLCTMSVDRYIAVCHPVKALDFRTPRNA
K I INVCNWILSSA IGLPVMFMATTKYRQG
SIDCTLTFSHPTWYWENLLKICVFIFAFIMPVLII
T V C Y G LM I L R L K S V RM L S G S K E K D R N
LRR I T RMV LV V V AV F I V CWTP I H I Y V I I K

https://zhanglab.ccmb.med.umich.edu/MAGELLAN
https://zhanglab.ccmb.med.umich.edu/MAGELLAN
Image of Figure 3
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ALVTIPETTFQTVSWHFCIALGYTNSCLNPV
LYAF LDENFKRCFREFC I P TSSN I EQQN
S T R I R Q N T R D H P S T A N T V D R T N H Q L
ENLEAETAPLP.
The first line is a header and always starts with a

greater-than sign (N) followed by descriptive text,
while the other lines are comprised of the primary
amino acid sequence (please refer to https://
zhanglab.ccmb.med.umich.edu/FASTA/ for addi-
tional information). Users have also the option to
supply other input information under the ‘Optional
Input’ button, which MAGELLAN would have deter-
mined automatically if not provided. The first such
parameter is the annotated transmembrane do-
mains. An example is shown as follows:
1 64 98 SPSMITAITIMALYSIVCVVGLFGN

FLVMYVIVRY
2 102 136 KTATNIYIFNLALADALATS

TLPFQSVNYLMGTWP
3 138 170 GTILCKIVISIDYYNMFTSIFTLC

TMSVDRYIA
4 181 212 RTPRNAKIINVCNWILSSAIG

LPVMFMATTKY
5 226 260 PTWYWENLLK ICVF IFAF

IMPVLIITVCYGLMILR
6 275 311 RNLRR ITRMVLVVVAVF I

VCWTPIHIYVIIKALVTIP
7 310 343 IPETTFQTVSWHFC IALG

YTNSCLNPVLYAFLDE
Here, the columns are represented by (1) the domain

number, (2) the starting residue number, (3) the ending
residue number, and (4) the primary structure for each
transmembrane domain separated by a tab character;
each transmembrane domain goes on a separate line.
The second parameter allows users to upload a query
GPCR structure instead of running GPCR-I-TASSER
for generating a structure model. The structure should
be in PDB file format (http://www.wwpdb.org/
documentation/file-format). Finally, the user can pro-
vide a list of residues corresponding to the orthosteric
site of the GPCR in order to bypass running COACH.
An example is shown as follows:
145,149,150,153,154,235,238,242,243,295,

298,299,302,324,328
These residue numbers are separated by commas

with no space in between. If a PDB structure was
provided, the residues should match with the uploaded
structure; otherwise, it should match with the input
primary sequence. Using these optional parameters
will help reduce the simulation time and improve the
modeling accuracy if appropriately provided.
To facilitate relative GPCR studies, the datasets

for all ligand and test sets filtered from the GLASS
library are provided for download at the MAGELLAN
homepage. Additionally, the top 1% of results from
screening the full ZINC database for all human Class
A GPCRs are pre-generated and made available
publicly.
Algorithmic distinctions MAGELLAN from other
chemogenomic approaches

It is worth noting that the general principle of
MAGELLAN, i.e., to perform ligand recognition and
VS through template-based ligand–protein associa-
tion comparisons, is not new and similar to that used
in several former studies [5,12,46,47]. However,
there are several critical differences between the
approaches in library construction, template identi-
fications, and ligand scoring. For example, instead of
using the separate and raw PDB, DrugBank and
ChEMBL libraries in these approaches, MAGELLAN
exploits a uniformly curated library GLASS [18],
which constitutes the largest ligand–GPCR associ-
ation library and has the binding affinity of all entries
(including Ki, Kd, IC50, and EC50 values) carefully
validated and filtered; these stringently validated
ligand–receptor binding interactions should help
improve the reliability of template-based binding
interaction transferal. Second, MAGELLAN is de-
signed specifically for GPCR screening. While it
might be considered as a drawback compared to the
pipelines performing general protein screening, it
does allow for introduction of GPCR-specific inter-
actions, including the transmembrane orthosteric
binding-residue based recognition (Eq. (3)), which
has not been previously considered but proves
helpful for increasing the specificity of GPCR
screening. Finally, and probably most importantly,
most of the existing approaches select ligands
based on individual ligand-by-ligand TC comparison,
which we found not always reliable for prioritizing
ligands from a high number of compound decoys
because an individual ligand from specific templates
cannot appropriately represent the overall binding
feature of the target protein and screening based on
individual ligand comparison could often result in
false positive results. To address this issue,
MAGELLAN constructs a ligand profile from multiple
ligand–receptor template clusters, and then uses the
profile, which is represented by a 2D ligand
fingerprint matrix (Figure 3), as a probe to detect
from the library the ligands that match best with the
ligand profile. As the ligand profiles are derived from
multiple ligand–receptor templates that are appro-
priately weighted with confidence of different pipe-
lines (Eq. (4)), they should reflect better the overall
binding feature of the target protein, which therefore
help increase the sensitivity of VS compared to the
individual ligand-by-ligand comparisons. Conceptu-
ally, this is largely corresponding to the extension
from sequence-sequence to profile-sequence align-
ments [25], which had achieved a fundamental
advantage to the problems of protein homologous
recognition and template-based protein structure
prediction [48]; but here MAGELLAN employs the
idea for ligand comparison and VS.

https://zhanglab.ccmb.med.umich.edu/FASTA/
https://zhanglab.ccmb.med.umich.edu/FASTA/
http://www.wwpdb.org/documentation/file-format
http://www.wwpdb.org/documentation/file-format
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Results and discussion

Comparison of MAGELLAN with component
modules

Five different alignment modules have been used
in MAGELLAN for homologous GPCR collection. To
justify the hybrid profile approach, we first examine
the performance of MAGELLAN in comparison with
that of the pipelines on individual alignment mod-
ules, in which the same procedure is performed as
shown in Figure 2, but only with the homologous
GPCRs detected by an individual module.
Dataset construction and VS experiment design

The test datasets are constructed from a compre-
hensive list of all 224 Class A GPCRs. For each
GPCR, the active ligands are collected from the
GLASS database [18], which are filtered with a
stringent activity threshold of 1 μM for Ki, Kd, IC50,
and EC50 values. In order to increase chemical
diversity and to have a balanced sample size for
each receptor, ligands are clustered for each GPCR
by their Bemis–Murcko frameworks [49]. The follow-
ing protocol was adapted fromMysinger et al. (2012)
[58]. If there are N600 frameworks, the activity
threshold will be decreased by a factor of 2 until
there were fewer than 600 frameworks, where the
highest activity ligands were selected from each
framework. If the number of frameworks is between
100 and 600, the highest activity ligand is selected
directly from each cluster. In case that fewer than
100 frameworks are formed, the highest activity
ligands were chosen regardless of their framework
until a total of 100 ligands was achieved. As a result,
there are in total 54,438 active ligands collected,
corresponding to 258 per GPCRs on average.
To test the VS methods, the active ligands from

each GPCR are mixed with a set of 500,000
randomly selected compounds as decoys from the
“Clean Drug-Like” subset of the ZINC database. The
compounds downloaded are in SMILES string
format, which are subsequently converted into
Morgan fingerprints with RDKit [41], consisting of
1024-bit fingerprints with a radius of 2. A retrospec-
tive virtual screen (RVS) experiment is implemented
by different methods, where the goal of RVS is to
prioritize the true active ligands using the proposed
scoring functions. The performance of RVS can be
qualitatively assessed by the EF:

EFx% ¼
Nx%

act

.
Nx%

select

Nact=N tot
ð7Þ

where Nact and Ntot are the total numbers of the
active and all compounds in the ligand pool,
respectively. Nact
x% and Nselect

x% are, respectively, the
numbers of true positive ligands and the number of
all candidates in the top x% of the compounds
selected by the RVS methods. A higher EFx
indicates a better RVS performance, where EFx =
1 means a random selection without enrichment.
While x% can be taken as different cutoff (1%, 2%,
5% etc), we focus mainly on 1% for concise data
presentation.
Here, we note that the randomly selected decoys

from ZINC were not property matched or had a
similarity threshold to known actives. In fact, we have
considered using inactive compounds as the de-
coys. However, the number of active compounds
greatly exceeds that of inactive compounds, as we
have observed from our GPCR datasets. Thus, to
have a balanced dataset to challenge our pipeline,
we proceeded with the current experimental design.
Given the sample size of our RVS (n = 224) and the
chemically diverse compounds to which each
independent GPCR binds, however, it should be
highly unlikely that the randomly chosen 500,000
compounds from ZINC (out of ~13 M) would
adversely bias our results.
To rule out the effect from using close homologous

targets, a constraint was applied to the selection of
GPCRs, where any homologous GPCR templates
with N30% sequence identity to the target, based on
the BLAST alignment, were excluded when inferring
the ligand profiles. In case this constraint is turned
off, only the target GPCR is excluded. Meanwhile, to
challenge the pipelines, a homologous cutoff has
been applied in the GPCR-I-TASSER structure
modeling and COACH binding prediction, i.e., all
structures with a sequence identity N30% to the
target GPCR sequence are excluded from the
threading template library, no matter if the constraint
of binding GPCR is applied.
MAGELLAN significantly outperforms component
modules in RVS experiment

In Figure 4(a), we present a scatter plot of the EFs
(EF1%) acquired from MAGELLAN at the constraint
of homologous GPCR filter, in comparison with that
from the pipelines built on the five individual
modules. It was shown that MAGELLAN achieves
a higher EF than the individual modules for most of
the GPCRs. For example, MAGELLAN outperforms
the BindRes module in 130 cases, while BindRes
does so in 72 cases. These numbers are 146/52,
115/77, 121/67, and 129/70 for BLAST, PSI-BLAST,
PPS-align, and TM-align modules respectively.
In Table 1 (columns 2), we also list the average and

median EF1% values for each method, which shows
again that MAGELLAN achieved a higher EF than all
the individual modules. To examine the significance of
the difference, a Wilcoxon signed-rank test is



Figure 4. Comparison of MAGELLAN and the five component modules in the RVS experiment on 224 Class A GPCRs.
Results are shown as EF1% either with (a) 30% sequence identity cutoff (constrained) or (b) no cutoff (not constrained but
with target GPCR excluded). Each point represents one GPCR, where the numbers in each triangle represent the number
of GPCRs for which the RVS pipeline outperforms the comparison ones.
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calculated for each pair of the comparison, where the
two-tailed p-value is ≤0.005 in all the comparisons,
indicating that the differences are statistically
significant.
Among the individual modules, the pipeline built on

TM-align performed slightly better than other
component modules, as evidenced by its higher
median EF1% of 13.76. This may be understandable
because structure is generally more conserved
than sequence and thus comparisons on structure
similarity detected more relevant GPCRs for ligand
profiles.
In Figure 4(b), we also present the results without

using the constraint of a 30% sequence identity
cutoff but with the target GPCRs excluded from the
ligand profile detection process. As expected, the
RVS performance becomes much better when
homologous GPCRs are included in the ligand

Image of Figure 4


Table 1. Summary of RVS results by MAGELLAN and that on the component modules

Methods and
modules

With homology cutoff Without homology cutoff

EF1% p-Value EF1% p-Value

MAGELLAN 14.38 (23.03) — 62.03 (59.13) —
BindRes 10.19 (17.90) 5 × 10−7 56.39 (56.35) 4 × 10−6

BLAST 7.04 (16.49) 5 × 10−14 53.02 (53.26) 1 × 10−14

PSI-BLAST 11.83 (20.79) 5 × 10−3 54.31 (54.18) 2 × 10−14

TM-align 13.76 (20.15) 8 × 10−9 56.92 (56.39) 6 × 10−4

PPS-Align 10.99 (20.25) 2 × 10−6 56.90 (55.55) 1 × 10−6

Data shown are median and average (in parentheses) EF1% values on 224 test Class A GPCRs. p-Value is calculated in the Wilcoxon
signed-rank test between MAGELLAN and the control modules. Alternative homology constraint cutoff was applied to remove all
homologous templates with sequence identity N30%.
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profile construction, where many of the points in the
figure have been shifted to the right-upper quadrant
in the plots, as compared to Figure 4(a). Neverthe-
less, the full-version MAGELLAN still has a higher
EF1% than that on the individual modules for the
majority of the cases. As shown in Table 1 (column
4), the average and median EF1% values of
MAGELLAN are again significantly higher than that
of the individual modules, with a Wilcoxon p-value
≤0.0006 for all the modules.
Here, with the homologous GPCRs included, the

gap between the structure- and sequence-based
methods disappears, which have similar median
EF1%. This is not surprising because most of the
homologous GPCRs with a strong structure similar-
ity have also a high sequence identity, which could
be detected by sequence-based modules as well.
Overall, the significant outperformance of

MAGELLAN over the component modules demon-
strated the necessity and advantage of the hybrid
profile approach by collecting complementary ho-
mologous GPCR associations.
Both sequence and structural alignments are
essential to MAGELLAN performance

To further examine the impact of the individual
GPCR alignment modules on the performance of
MAGELLAN, we counted the highest-performing
alignment method type for each GPCR under the
sequence cutoff constraint, where the type was
denoted as either sequence (BLAST, PSI-BLAST,
BindRes) or structure based (TM-align, PPS-Align).
Among the 224 Class A GPCRs, 89 have a
structure-based module as their top-scoring module
with the highest EFs, while the sequence-based
module does so in 135 cases. The overall number of
GPCRs was relatively evenly distributed for each
module, and no module stood out and outperformed
others.
We also examined the effect of running

MAGELLAN without the homology cutoff constraint.
One hundred one out of 224 targets resulted in a
sequence-based module as their top-scoring mod-
ule, while 123 were from structure-based modules.
Among the 123 cases, the TM-align module produced
94 of the best cases, showing that the global structure
comparison is more appropriate than local pocket
comparison at the high homology level. Generally, in
both scenarios with and without homology cutoff
constraint, each module played a role in lending
their predictive power to MAGELLAN. This is consis-
tent with the observation that MAGELLAN outper-
forms all the component modules with a significant p-
value, which signifies the synergistic effect of data
fusion.
Taken together, these results appear to suggest

that sequence-based methods helped compensate
for where the structure-based methods failed and
vice versa. Apparently, leaving any method types will
result in reduction on overall performance, which
highlights the advantages of MAGELLAN using a
composite approach in the selection of template
GPCRs for the construction of the ligand profile. It
would be interesting and important to examine the
effects of incorporating additional methods in a
future study.

Benchmark of MAGELLAN with other
VS approaches

To examine MAGELLAN with other state of the art
approaches,we tested the performance in control with
four widely used VS programs, including AutoDock
Vina [6], DOCK 6 [7], PoLi [5], and FINDSITEcomb2.0
[13]. The former two are receptor docking-based
approaches, where the crystal structures of the target
GPCRs were used as the input for molecular docking.
Please refer to the Supplementary Text for details on
how AutoDock Vina and DOCK 6 were set up and
runs performed. PoLi is a ligand-based VS tool with
the probe ligands detected by the binding-pocket
structural comparisons between target and templates,
while FINDSITEcomb2.0 is an extended approach
from the same lab which utilizes threading and
structure-based comparisons for template ligand
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selection. The benchmark tests of the methods were
performed on two separate datasets from DUD-E [50]
and GPCR-Bench [51], respectively.
As the software is not available for installation for

PoLi and FINDSITEcomb2.0, the data for DUD-E
were taken from the authors' publication [5] and
webserver (http://cssb2.biology.gatech.edu/
FINDSITE-COMB-II/data/findsitecomb2data.zip) for
these two methods, respectively. In both bench-
marks against DUD-E, the authors applied a 30%
sequence identity cutoff for template selection.
Moreover, the method they employed for the
calculation of EF1%was mathematically identical to
that used in this study, making the data comparable
with that of MAGELLAN.
Tests on DUD-E dataset

DUD-E [50] is a widely used dataset specially
designed for VS benchmarks. Benchmarks were run
on GPCRs in DUD-E; this set contains five Class A
GPCR proteins, where each protein has on average
224 active ligands from ChEMBL. Each active ligand
is paired with 50 molecular decoys (with similar
chemistry but of different topology) drawn from
ZINC. While the turkey beta-1 adrenergic receptor
(P07700) was included in DUD-E, there is no
pharmacological data in any of the ligand databases.
Thus, the ligand clusters from the human orthologue
(P08588) were used in its place. To examine the
performance, we run MAGELLAN and the control
programs in an automated mode against the ligand
dataset for each GPCR target, with the goal to pick
up the true active ligands using their scoring
functions.
In Table 2, we list the EF1% value of VS for the five

GPCRs, calculated by MAGELLAN, AutoDock Vina,
DOCK 6, FINDSITEcomb2.0, and PoLi, respective-
ly. The data show a significantly better performance
of MAGELLAN than the four control algorithms for
three out of the five tested GPCRs, under the
sequence identity cutoff of 30%. In particular, the
human dopamine receptor DRD3 performed excep-
tionally well with MAGELLAN, with an EF1% 28.65,
Table 2. RVS results of EF1% on five Class A GPCRs in DUD

Gene UniProt ID MAGELLAN PoLi F

AA2AR P29274 0.95 (39.03) 1.2 0
ADRB1 P07700 5.47 (36.11) 2.0 3
ADRB2 P07550 13.68 (34.75) 2.6 5
CXCR4 P61073 0 (23.97) 0 2
DRD3 P35462 28.65 (39.27) 5.2 3
Average 9.75 (34.63) 2.2 2

Values outside (and inside) parentheses are the results
cutoffs. Data for PoLi were taken from Roy et al. [5] and dat
the authors' webserver.
which is more than five times higher than that of the
best control methods (5.2 by Poli). By manually
checking the subtype name of the templates, a
number of related GPCRs have been selected for
the DRD3, including rat dopamine receptor 1B
(P25115) and human dopamine receptor 1A
(P21728), where the contribution of their ligands in
the clusters was well established, accounting for 9
chemotypes (Figure 5(a)).
Similarly, MAGELLAN outperforms the control

methods on the beta-1 adrenergic receptor and
beta-2 adrenergic receptor as well, with the EF1%
being 1.7- and 2.6-folds higher than the best of the
control methods, respectively. The main reason for
the enhanced performance is due to complementary
GPCR modules exploited in MAGELLAN which
detected several closely related GPCRs that bound
with similar ligands, despite the low sequence identity;
these include P25100, P18130 and O02824 for
ADRB1, and Q01338 and P23944 for ADRB2. The
ligand profiles constructed from the analogous ligands
helped to prioritize the active compound hits. Howev-
er, MAGELLAN yielded a low EF1% of 0.95 and 0 for
the adenosine A2A receptor (AA2AR) and the C-X-C
chemokine receptor type 4 (CXCR4). For AA2AR, this
is mainly due to the lack of appropriate GPCR
detection because no closely related GPCRs exist in
the GPCR–ligand library used by MAGELLAN after
the 30% sequence identity cutoff is applied. For
CXCR4, MAGELLAN detected a few relatives (in-
cluding P51682, P51684 and O54814), but their
associated ligands were only present in one out of
the top 40 clusters used in MAGELLAN (Figure 5(b)),
suggesting the need for chemotype diversity of the
clusters. Moreover, the ligand set sizes of the clusters
for the related GPCRswere very small (56, 65 and 34,
respectively), lessening their influence overall. After
turning off the homology cutoff constraint, however,
MAGELLAN correctly detected all these homologous
GPCRs, which resulted in a significantly higher EF1%
value (39.03 and 23.97) in both cases.
The molecular docking algorithms in the current

study utilized ligand flexibility with a rigid protein
receptor. However, proteins are inherently flexible
-E Dataset

Sc2.0 AutoDock AutoDock Refined Dock6

1.42 4.03 2.86
.24 0.66 0.88 2.63
.20 2.69 0.90 1.35
.53 0 0 2.49
.54 2.64 1.37 1.26
.90 1.48 1.44 2.12

for MAGELLAN with (and without) homology constraint
a for FINDSITECcomb2.0 (FSc2.0) were downloaded from

http://cssb2.biology.gatech.edu/FINDSITE-COMB-II/data/findsitecomb2data.zip
http://cssb2.biology.gatech.edu/FINDSITE-COMB-II/data/findsitecomb2data.zip
uniprotkb:P29274
uniprotkb:P07700
uniprotkb:P07550
uniprotkb:P61073
uniprotkb:P35462


Figure 5. Proportion of ligands from related GPCRs in clusters from MAGELLAN with homology constraint cutoff. (a)
Dopamine Receptor D3 (DRD3). (b) C-X-C chemokine receptor type 4 (CXCR4). The presence of chemotypes containing
ligands from respective related GPCRs was examined, where one cluster represents one chemotype. The influence of
related GPCRs resulted in nine chemotypes for DRD3, while CXCR4 only had one.
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macromolecules, and the side chains of the orthosteric
site could potentially adopt alternative rotameric states
to accommodate an assortment of different chemical
compounds. Therefore, using a rigid receptor in our
docking simulations could be a drawback, potentially
leading to erroneously decreased performance and/or
unfair comparison results. To partially mitigate the
effects of neglecting side-chain relaxation limitedly to
the selected poses obtainedwith a rigid protein docking
approach, we rescored the top-docked poses gener-
ated from AutoDock Vina using an induced fit protocol
from Molecular Operating Environment (MOE), which
allows for side chain flexibility on the receptor. As was
shown in Table 2, there was no clear improvement on
average EF over ranking based solely on AutoDock
Vina's scoring function, although it did help in some
cases such as AA2AR and ADRB1 (but worsening two
other cases of ADRB2 and DRD3).
There is, however, still a possibility that larger

movement on the transmembrane domains or
extracellular loops is required for the complete
adoption of binding pockets amenable to chemo-
types of the active compounds, though this would
require expert curation per target on a case by case
basis. In this regard, molecular dynamics simula-
tions have been used in various studies to generate
distinct conformers of the receptor for use in
ensemble docking, and demonstrated some level
of improvements on docking performance [52,53].
Since the attention of the current study is to compare
a newly developed, automated VS pipeline (MA-
GELLAN) to easily automatable docking pipelines
(AutoDock Vina, DOCK6), we have chosen to
implement the docking programs with rigid-body
receptor setting and limited the flexibility only on
ligand conformations in our benchmark tests. Nev-
ertheless, the involvements of more extensive
flexible docking simulations, together with expert
curation in the selection of key residues in the
orthosteric site for flexibility and utilization of different
receptor conformations, would likely considerably
improve the docking performance results.
Altogether, these results highlight the importance

of the inclusion of homologous templates for ligand
profile constructions. This phenomenon was ob-
served for many other receptors, in which EF1% was
significantly increased by the inclusion of close
homologous GPCRs in ligand profile construction.
In particular, the number of chemotypes and size of
ligand sets from related GPCRs appeared to play a
role in performance, indicating that the success of
RVS not only requires detection of the receptors but
also with sufficient multiplicity of clustering ligands;
this suggests again the importance of combination of
multiple GPCR detection modules, as more of the
consensus ligand–GPCR associations could be
collected with an increasing number of complemen-
tary modules.
Overall, the average EF1% is 9.75 by MAGELLAN,

which is 4.4 and 3.4 times higher than that by PoLi
and FINDSITEcomb2.0, and 6.6 and 4.6 times
higher than that by AutoDock and Dock6, respec-
tively. The EF1% value will increase by 3.6 times if
homologous GPCRs are allowed to be included in
the profile construction process. Nevertheless, the
two-tailed p-values of MAGELLAN compared to the
control methods are not significant (i.e., 0.12, 0.15,
0.09, and 0.11 to PoLi, FINDSITEcomb2.0,

Image of Figure 5
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AutoDock, and Dock6, respectively, with a Student's
t-test), probably due to the low number of proteins
tested in this dataset.
Tests on GPCR-Bench dataset

The second benchmark dataset on which we
conducted experiments is GPCR-Bench [51]; it
contains 20 Class A GPCRs, each having between
100 to 600 active ligands accompanied by 50 decoys
per active ligand. The RVS results on this bench-
mark are summarized in Table 3.
In total, MAGELLAN performed favorably (average

EF1% = 13.70) in this benchmark, as compared with
AutoDock Vina (3.16) and DOCK 6 (3.47). AutoDock
Vina and DOCK 6 achieved the best enrichment for
the free fatty acid receptor 1 (GPR40) with an EF1%=
24.28 and 21.84, respectively. Since all of its active
ligands belong to the same chemotype [51], the
binding pocket of this target does not have as much
variation compared with other targets. While active
compounds from the other receptors may be chemi-
cally diverse, the snapshot of the binding pocket of
GPR40 from the particular structure used (PDB:
4PHU) likely accommodates this single chemotype
well (Figure S4). Also, since much less conformational
variation is involved, the docking performance is less
impacted by the rigid-body docking protocol employed
in this experiment for such cases. MAGELLAN
attained a comparable enrichment on this target with
EF1%=22.04; if the homologous templates are includ-
ed, however, the performance is significantly improved
Table 3. Summary of EF1% results on 20 Class A GPCRs
in GPCR-Bench

Gene UniProt ID MAGELLAN AutoDock Dock6

GPR40 O14842 22.04 (48.92) 24.28 21.84
OX2R O43614 7.92 (34.65) 1.82 0
ADRB2 P07550 24.64 (60.87) 0.20 9.40
ADRB1 P07700 1.03 (54.36) 0 2.73
ACM2 P08172 23.00 (36.00) 7.76 7.12
ACM3 P08483 24.88 (48.26) 2.31 8.97
S1PR1 P21453 0.50 (51.24) 0.47 0.16
PAR1 P25116 0.00 (0.00) 13.39 2.00
5HT1B P28222 16.83 (60.89) 1.54 2.79
AA2AR P29274 0.48 (34.13) 0 0.64
OPRD P32300 27.93 (65.77) 3.77 0.75
HRH1 P35367 21.39 (50.75) 3.28 0.22
DRD3 P35462 46.27 (60.70) 1.24 1.03
OPRK P41145 12.94 (47.76) 0.65 0.22
OPRX P41146 2.99 (24.38) 0.25 2.85
5HT2B P41595 18.41 (20.40) 0.98 0.98
OPRM P42866 2.44 (58.54) 0 1.08
CCR5 P51681 4.06 (23.86) 0.53 4.36
CXCR4 P61073 4.26 (70.21) 0 0.26
P2Y12 Q9H244 11.94 (13.43) 0.76 2.03
Average 13.70 (43.26) 3.16 3.47

Values outside (and inside) parentheses are the results for
MAGELLAN with (and without) 30% sequence identity cutoff for
template exclusion.
to EF1%=48.92. Additionally, AutoDock Vina achieved
decent enrichment with the protease-activated recep-
tor 1 (PAR1) at EF1%=13.39, while MAGELLAN has a
zero EF1% with a homology constraint cutoff. In fact,
MAGELLAN detected several protease-activated re-
ceptor subtypes (Q63645, P55085, Q96RI0), but their
respective ligand sets were of a very small size (2, 59,
10, respectively). As a result, these relative ligands
were not present in the top 40 clusters because of the
minority of binding ligands, which resulted in the
reduced performance. While most of the successful
examples of GPCRs are found to have at least one
related subtype that had a sizeable number of ligands,
the data suggest that the number of ligands in the
ligand sets of closely related members is essential to
the success of MAGELLAN, in addition to its ability to
detect homologous GPCRs.
We also investigated whether there was any

association between chemical diversity of the active
compound sets for each GPCR and the performance
of MAGELLAN. The results in Figure 5 did not show a
visible overall correlation between these two vari-
ables. Nevertheless, MAGELLAN seems tending to
perform better on the GPCRs for which there was a
greater chemical diversity, especially in the cases
where the ratio of the number of Bemis Murcko
scaffolds to total active compounds was greater than
0.5. For some of the benchmark sets with lower ratios,
such as with GPR40 (0.280), MAGELLAN performed
well with and without the constraint, while for PAR1
which has a ratio = 0.317, MAGELLAN generated an
EF1%=0. Given that the benchmark sets for both of
these receptors have a limited assortment of chemo-
types, it is likely that MAGELLAN was not able to
capture the corresponding chemotypes within the top
40 clusters. With respect to PAR1, numerous other
active and chemically dissimilar compounds were
overrepresented in its ligand profile, given the small
amount of ligand sets of its homologs. On the other
hand, the ratio for the benchmark set for AA2AR was
0.822, indicating a high chemical diversity. With the
sequence identity cutoff constraint,MAGELLANhad a
EF1%=0, while it was rescued with the removal of
cutoff constraints and had an EF1% N30. Though this
represents a special case in which having closely
related homologs helps with the performance of
MAGELLAN, it is interesting to observe the impor-
tance of homolog selection. Overall, our data seem to
suggest a slight-to-no dependence of RVS perfor-
mance on chemical diversity, while a better normal-
ization of benchmark sets for VS would be aided by
more equal ratios of Bemis Murcko scaffolds to active
compounds.
In Figure S6, we also present the log receiver

operating characteristic curves (ROC) for the RVS
results by MAGELLAN and the two control methods
for all targets, where the corresponding Boltzmann-
enhanced ROC (BEDROC, α = 20) values are listed
in Table S1. Here, as opposed to the conventional

uniprotkb:O14842
uniprotkb:O43614
uniprotkb:P07550
uniprotkb:P07700
uniprotkb:P08172
uniprotkb:P08483
uniprotkb:P21453
uniprotkb:P25116
uniprotkb:P28222
uniprotkb:P29274
uniprotkb:P32300
uniprotkb:P35367
uniprotkb:P35462
uniprotkb:P41145
uniprotkb:P41146
uniprotkb:P41595
uniprotkb:P42866
uniprotkb:P51681
uniprotkb:P61073
uniprotkb:Q9H244


4886 Virtual Screening of Human Class-A GPCRs
ROC, BEDROC has the advantage to better assess
early enrichment [54], which is important as com-
pounds selected for experimental validation are
always chosen from top-ranked candidates. Overall,
MAGELLAN exhibited a higher average early
enrichment both with (BEDROC = 0.32) and without
(BEDROC = 0.68) the homology constraint cutoffs,
as compared to AutoDock Vina (BEDROC = 0.16)
and DOCK 6 (BEDROC = 0.14). This suggests
again that MAGELLAN has a higher propensity to
correctly select compounds that would potentially
bind the GPCR of interest.

Case studies on MAGELLAN-based
deorphanization

Orphan GPCRs usually refer to those without
identified endogenous ligands or known physiolog-
ical functions. Recent survey has shown that 87
Class A, 8 Class C, and 26 adhesion GPCRs
are orphan receptors in the human genome [20].
Despite the orphan status, these receptors likely
have physiological roles intertwined with diseases
and remain potential therapeutic targets in drug
discovery. Here, we present case studies on two
important GPCRs to illustrate the VS process of
MAGELLAN and potential applications for GPCR
deorphanization.
Mu opioid receptor

Mu opioid receptor (UniProt ID: P35372) is a
medically important target, which is closely involved
in the reduction of pain. Common drugs in pain
reduction include morphine and heroin, both of
which are strong opioid agonists; but a major
drawback is that their consumption often results in
unwanted side effects, such as nausea, constipa-
tion, respiration depression, and addiction. Many
current research efforts have been devoted to the
search of new analgesic drugs with reduced or
eliminated maladies [55].
The application of MAGELLAN on the human mu

opioid receptor achieved an exceptionally high EF1%
of 87.81. Figure 6 shows part of the MST of human
GPCRs, involved with the mu opioid receptor. Here,
the MST was constructed using SEA, described in
“Construction of minimum spanning tree by similarity
ensemble approach” in Methods, where the GPCR
similarity was assessed based on the ensemble of
compounds recognized by the MAGELLAN pipeline
for different receptors. It is shown that three other
related GPCRs, including the kappa opioid, delta
opioid and nociceptin receptors, are in close
neighbor of the mu opioid receptor in the MST
(blue nodes in Figure 6). These data first show that
MAGELLAN has ability to recognize compounds
with a high accuracy for the important drug target
receptor. Meanwhile, the SEA-based analysis on the
MAGELLAN products can detect untapped relations
between GPCRs, which should help for GPCR
deorphanization and function annotations.
Motilin receptor

Human motilin receptor (UniProt ID: O43193) is a
former orphan GPCR, whose closest homolog is the
growth hormone secretagogue receptor type 1 (also
known as ghrelin receptor). The MAGELLAN pipe-
line achieves a high EF1% of 33.33 on the human
motilin receptor, where several alignment modules in
MAGELLAN were able to select multiple orthologues
of the growth hormone secretagogue receptor type
1. One example of the alignment detected by the
BindRes module between the human motilin recep-
tor and the pig growth hormone secretagogue
receptor type 1 is shown in Figure S7, where a
highly conserved local binding region was recog-
nized, although the global sequence identity be-
tween the receptors is low.
Once again using the SEA and MST analyses, the

motilin receptor and the growth hormone secreta-
gogue receptor are shown to be pharmacologically
similar in Figure 6 (red nodes). It should be noted
that there are no ligand sets corresponding to any
orthologues of the motilin receptor, except for the
ligands of the human variant. Taking together, these
results demonstrate again the feasibility of
MAGELLAN for the application to deorphanize
GPCRs. It should be noted that the BindRes score
as defined in Eq. (3) relies on Ballesteros–Weinstein
nomenclature, which is specific to Class A GPCRs.
Thus, the current MAGELLAN pipeline and the case
studies are focused on Class A GPCRs, to which
most orphan GPCRs belong. Nevertheless, the
extension of MAGELLAN to other GPCR classes
should be feasible after necessary parameter re-
optimizations. The work on this line is currently under
progress.
Conclusions

Built on the assumption that similar receptors
bind with similar ligands, we have developed a
new hierarchical, ligand profile-based approach,
MAGELLAN, for the VS of human Class A GPCRs.
Starting from amino acid sequence of the target
proteins, MAGELLAN first utilizes GPCR-I-TASSER
[30] to generate tertiary structure prediction for the
target protein. Next, five modules of structure,
sequence and orthosteric binding-site based align-
ment methods are extended to the detection of
homologous and analogous proteins, where all
known ligands bound with the proteins are clustered
for the construction of chemical profiles; these
profiles are finally used to thread through the

uniprotkb:P35372
uniprotkb:O43193


Figure 6. Minimum spanning tree of GPCRs constructed from MAGELLAN virtual screening results. The relation of
GPCRs is assessed with the similarity ensemble approach (SEA), with the MST created using Kruskal's algorithm on E-
values of the ligand assembles associated with different GPCRs.
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compound libraries for screening putative ligands
and drugs for the target receptor.
The pipeline was first tested on a comprehensive

set of 224 Class A GPCRs and achieved a median
enrichment factor EF1% of 15.31 after excluding all
homologous templates in both structure prediction
and GPCR template detection processes, which is
significantly higher than the methods built on
individual GPCR alignment modules. In addition,
MAGELLAN was examined on two independent
benchmark sets from DUD-E [50] and GPCR-Bench
[51], consisting of 5 and 20 Class A GPCRs, with
ligand selection results compared favorably with that
of other state-of-the-art docking and ligand-based
VS approaches, including AutoDock Vina [6], DOCK
6 [7], PoLi [5] and FINDSITEcomb2.0 [13]. Detailed
data analysis shows that the major advantage of
MAGELLAN lies in the utilization of both structure
(including global and local) and orthosteric binding-
site based comparisons for GPCR template detec-
tions, whereas the ligand profiles constructed from
multiple resources of the data fusion help enhance
the sensitivity and specificity of the VS through the
compound databases. Here, we selected to focus
MAGELLAN on Class A GPCRs, mainly due to the
fact that the Class A GPCRs account for N85% of the
GPCR superfamily and the overwhelming majority of
GPCR drug targets are under Class A. This selection
also provides a technical specificity on the approach,
as one of the five modules by MAGELLEN (BindRes)
considers conserved orthosteric binding profiles that
are only available to the Class A GPCRs. Although
the BindRes feature alone does not create the
highest enrichment performance among all the
modules (Table 1), our results showed that turning
off the BindRes module reduced the MAGELLAN
performance (with a p-value b.05 in the Wilcoxon
signed-rank test between results with and without

Image of Figure 6
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BindRes), which partly highlights the specialization
contribution of the selection.
Apart from the favorable benchmark performance,

several advances may help future MAGELLAN
developments. First, MAGELLAN is a ligand profile-
based approach utilizing only ligand–GPCR associa-
tions. This is different from other ligand-oriented
approaches, such as PoLi which relies on known
ligand–protein complex structures from the BioLip
[56]. Currently, CLASS contains 533,470 non-
redundant ligand–GPCR associations, which is over
7500 times higher than the number of known ligand–
GPCR structural complexes in BioLiP; this is probably
part of the reason for the significant improvement of
MAGELLAN over PoLi. The gap between the ligand–
receptor association and the protein binding structure
databases are rapidly increasing [16–18,57], which
should give additional advantage and potential to the
future development of the ligand-basedmethods such
as MAGELLAN.
Compared to the docking-based approaches,

MAGELLAN has the advantage in utilizing low-
resolution predicted models, since high-resolution
experimental structures are often unavailable to
many important drug targets. Technically, it is also
a benefit to exploit the global fold comparison for
GPCR template detection because many experi-
mentally solved structures are in unbound apo form,
which can significantly impact the accuracy of the
docking-based approaches that often have difficulty
in modeling the ligand-induced conformational
changes. In addition, docking target protein through
a large library of compounds is very computationally
expensive and time consuming. As experienced in
this study, it typically took days to weeks for
AutoDock Vina or DOCK 6 to complete a docking
screen for a single GPCR, depending on the target;
on the other hand, ligand-based screening using
MAGELLAN only takes about an hour, after GPCR-I-
TASSER that can take 10–20 h for structural folding
simulations. Nevertheless, docking based programs
have the advantage to generate 3D model of binding
structures that is often useful for function and drug-
based analyses. Meanwhile, we also found that
there are cases (such as PAR1) for which the
docking-based approach achieve a much higher
enrichment. Thus, structure-based docking methods
have still their own value, where a combination of
MAGELLAN with these approaches should further
improve the functionality and accuracy of VS
experiment; such development is currently under
progress. Nevertheless, MAGELLAN has its own
limit as its success relies on the detection of
homologous GPCR templates. In principle, the
approach could not work for the cases if no known
GPCR–ligand associations exist or are detected.
However, utilization of concept of ligand profile does
allow the generation of reliable models from multiple
weak template hits, which is the main reason that
MAGELLAN outperformed the individual GPCR-
detection modules and other chemogenomic- and
docking-based approaches, even with the stringent
homology-filtering conditions as shown in Table 1
and Figure 4(a). In this regard, the development of
new sensitive non-homologous ligand–GPCR asso-
ciations should help to further improve the
MAGELLAN modeling quality.
Finally, one advantage of MAGELLAN is on the

ability to recognize ligands for orphan GPCRs, partly
due to the fact that the pipeline does not rely on the
availability of structure and function of knownGPCRs.
As illustrated by the case studies shown in Figure 6,
reliable ligand compounds can be recognized for the
orphan GPCRs, where new connections can be
established between the orphan GPCRs and other
receptors through the SEA analyses of ligand sets
identified by MAGELLAN. While these and other
examples can only be validated with pharmacological
experiments, the data demonstrated a potential
aspect of applications of MAGELLAN to the deorpha-
nization of GPCRs.
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