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Abstract

The rapid progress of cryo-electron microscopy (cryo-EM) in structural biology has raised an urgent need for
robust methods to create and refine atomic-level structural models using low-resolution EM density maps. We
propose a new protocol to create initial models using I-TASSER protein structure prediction, followed by EM
density map-based rigid-body structure fitting, flexible fragment adjustment and atomic-level structure
refinement simulations. The protocol was tested on a large set of 285 non-homologous proteins and
generated structural models with correct folds for 260 proteins, where 28% had RMSDs below 2 Å. Compared
to other state-of-the-art methods, the major advantage of the proposed pipeline lies in the uniform structure
prediction and refinement protocol, as well as the extensive structural re-assembly simulations, which allow
for low-to-medium resolution EM density map-guided structure modeling starting from amino acid sequences.
Interestingly, the quality of both the image fitting and subsequent structure refinement was found to be strongly
correlated with the correctness of the initial I-TASSER models; this is mainly due to the different correlation
patterns observed between force field and structural quality for the models with template modeling score (or
TM-score, a metric quantifying the similarity of models to the native) above and below a threshold of 0.5.
Overall, the results demonstrate a new avenue that is ready to use for large-scale cryo-EM-based structure
modeling and atomic-level density map-guided structure refinement.

© 2020 Elsevier Ltd. All rights reserved.
Introduction

The determination of high-resolution protein struc-
tures is critical to biological function annotation and
rational drug discovery. Recent progress in single-
particle cryogenic electron microscopy (cryo-EM) has
brought about exciting opportunities for direct determi-
nation of protein structures without the need for
crystallization [1–3]. A rapid accumulation of low-to-
medium resolution protein structures derived from EM
data has been recently witnessed in the Electron
Microscopy Data Bank (EMDB) [4]. While the surge in
thenumber of cryo-EM-derived structures ismainly due
to advancements in electron detector technology and
r Ltd. All rights reserved.
image-processing techniques [5], the field still lacks
advanced computational methods to create and refine
atomic-level structure models. This is particularly
challenging when the resolutions of the EM density
maps are in the intermediate range (5–10 Å) [6].
Considerable effort has been made to address this

challenge [7], where the approaches can be largely
categorized into two groups. The first constructs
protein (mainly complex) models by fitting known
component structures into EM density maps, which
can be done either by normal mode analysis [8,9] or
through fast Fourier transform (FFT) based rigid-body
docking [10]. The second group tries to refine existing
structure models by maximizing the correlation
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Figure 1. Flowchart of EM-Refiner, which fits and refines low-resolution predicted protein structures generated by I-
TASSER using cryo-EM density maps. Following I-TASSER structure prediction, the EM density map-guided modeling
procedure consists of three steps of structure-density map superposition, fragment adjustment and atom-level refinement
simulations.
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between the refined structures and the experimental
EM density maps through molecular dynamics simu-
lations (e.g., MDFF [11], Flex-EM [12]) or Monte Carlo
simulations (e.g., Rosetta [13]). Despite their suc-
cesses, many of the approaches perform rigid-body
fitting and flexible refinement separately. For example,
“fit-in-map” in Chimera [14], ADPEM [15] and EMFIT
[16] are designed for rigid-body structure and density
map superposition; Rosetta [13] and Flex-EM [11]
require users to input the initial structure superposed
with the density map; and CCP-EM [17], Scipion [18]
and Situs [19] perform rigid-body fitting and flexible
refinement separately. These requirements and con-
straints limit the usefulness and efficiency of the
approaches, since fitting and refinement are two
intertwined processes and most proteins do not
have known crystal structures.
In this work, we propose a new uniform pipeline,

EM-Refiner, which first generates low-resolution
structure models using the cutting-edge I-TASSER
protein structure prediction method. Next, the models
are superposedwith the EM density map, and atomic-
level, density map-guided flexible refinement simula-
tions are carried out (Figure 1). To examine the
effectiveness of the pipeline, we performed a large-
scale benchmark test on 280 non-redundant proteins
with density maps created from both noise-free
simulations and cryo-EMexperiment data. The results
demonstrate the significant advantages of the EM-
Refiner pipeline for cryo-EM-based protein structure
refinement and modeling over current state-of-the-art
methods [10,12,13]. The source code and online
server for EM-Refiner are freely available at https://
zhanglab.ccmb.med.umich.edu/EM-Refiner/.
Results

Benchmark results using simulated density maps

Benchmark dataset

The benchmark dataset contained 278 single-
domain proteins with sequence lengths ranging from
76 to 620 residues and pair-wise sequence identities
<30%. It included 48 α-, 34 β-, and 196 αβ-proteins,
following their SCOP categorization [20]. Simulated
noise-free density maps were generated from the
target structures using EMAN2 (pdb2mrc) [21], where
the resolution for each domain was randomly selected
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Figure 2. Illustration of the rigid-body superposition of the predicted model onto the EM density map for the circadian
clock protein kaiA (PDB ID: 4g86A). The initial I-TASSER model (lime) was superposed onto the EM density-map by EM-
Refiner (yellow) and Situs (green), which had cRMSDs of 3.84 and 5.17 Å, respectively, compared to the ideal position
(blue) obtained by TM-score superposition onto the target structure (red).
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in the integer range from 5 to 10 Å. For a given
resolution value, each atom in the simulated density
map is represented as a 3DGaussian distribution with
the deviation width proportional to the resolution and
the amplitude proportional to the atom mass. The
other parameters were set to their default values. In
Table S3 in the Supporting Information (SI), we list the
selected resolution parameters for all test domains,
where a histogram is given in Figure S1. Here, one
reason for us to choose the range of 5–10 Å is that it
represents a typical low-to-medium resolution range
for which I-TASSER and other structural modeling
tools are most needed, as high-resolution structure
determination is difficult to achieve from the density
maps alone, although the average resolution of the
cryo-EM data in the community has kept improving in
the last years [4].
For each target, the initial structure models were

predicted by I-TASSER [22], for which all homolo-
gous templates with sequence identities ≥30% to
the query were excluded. The average TM-score of
the resulting I-TASSER models was 0.713, where
254 out of the 278 targets had TM-scores ≥0.5 and
24 had TM-scores <0.5. A more detailed TM-score
distribution is displayed in Figure S2, which is largely
consistent with the typical accuracy range of I-
TASSER in blind tests [23]. Here, TM-score is a
metric used to measure the similarity between two
protein structures [24]. The value of TM-score falls in
the range (0,1], where a TM-score of 1 indicates a
perfect match between two structures and a value
≥0.5 indicates that two structures share the same
fold [25]. Our assessments of the initial and final
model quality will be mainly based on TM-score,
since it is more sensitive than RMSD to the
topological similarity of protein structures, although
the latter is also listed to provide additional reference
information. The initial model set, target structures
and the simulated density map data can be
download at https://zhanglab.ccmb.med.umich.edu/
EM-Refiner/.
Initial model and density map superposition

Many of the commonly used cryo-EM structure
refinement programs require users to manually
specify the initial protein structure conformation
superposed with the density map. Because correct
superposition between the input structure and
density map can reduce the conformational search
time and impact the final modeling results, EM-
Refiner performs a quick replica-exchange Monte
Carlo (REMC) simulation search to superpose the
initial model and density map, which is guided purely
by the correlation coefficient between the model and
EM map data (see Methods).
To assess the effectiveness of this procedure, we

calculated the coordinate RMSDs, cRMSD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑L

i¼1jx i
!−y i

!j2=L
q

, of the superposed models, where

L is the protein length, x! represents the coordinates
of the I-TASSER model superposed onto the target
structure using the TM-score program [24], and y!
represents the coordinates of the model generated
by EM-Refiner-based superposition with the EM
density map. On average, the cRMSD by EM-
Refiner was 2.94 Å, which was slightly lower than
that obtained by Situs (3.45 Å), which uses an FFT-
based search technique [10]. Among the 278 test
cases, EM-Refiner created lower cRMSD superpo-
sitions for 152 cases, while Situs did so for 126
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Table 1. Summary of modeling results by I-TASSER structure prediction and the follow-up EM density map refinement
methods on 278 test proteins

Methods Starting from predicted superposition Starting from ideal superposition

TM-score (p-value) RMSD (Å) TM-score (p-value) RMSD (Å)

I-TASSER 0.713 (7.5 × 10−49) 5.71 0.713 (4.4 × 10−82) 5.71
Flex-EM 0.714 (6.3 × 10−50) 5.41 0.718 (1.8 × 10−41) 5.37
Rosetta 0.761 (6.1 × 10−4) 4.76 0.780 (3.7 × 10−5) 4.62
EM-Refiner 0.779 4.74 0.796 4.37

P-values were calculated using two-tailed Student's t-tests between the TM-scores produced by EM-Refiner and the other programs.
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cases. Part of the reason for the better performance
by EM-Refiner is that it uses different poses and
structural conformations as initial structures for its
REMC simulations, which increases the diversity of
the superposition search results, while the FFT-
based Situs search only corresponds to one energy
basin. In Figure 2, we show a representative
example from the circadian clock protein kaiA
(PDB ID: 4g86A), for which the superposed model
by EM-Refiner had a 3.84 Å cRMSD, while the
cRMSD of the Situs model was 5.17 Å.
Performance of EM-Refiner on structure refinement

Table 1 (columns 2–3) lists a summary of the
structural refinement results for EM-Refiner starting
Figure 3. Comparison of structure models obtained by differe
score and RMSD to the native structure, respectively.
from the predicted initial model superpositions. On
average, EM-Refiner achieved a TM-score of 0.779
for the 278 test proteins, which was significantly
higher than that of the initial I-TASSER models
(0.713), the difference of which corresponded to a p-
value of 7.5E-49 as determined by a two-tailed
Student's t-test. The RMSD of the I-TASSERmodels
was also significantly reduced from 5.71 to 4.74 Å
by EM-Refiner refinement, corresponding to a p-
value of 1.26E-32. These results demonstrate the
effectiveness of EM-Refiner at refining low-to-
medium resolution models.
In Figure 3 (column 1), we present a head-to-head

comparison of the TM-score and RMSD values
between the models produced by I-TASSER and EM-
Refiner. Interestingly, the majority of the significantly
nt methods on 278 test proteins. Rows 1 and 2 are the TM-
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refined cases are located in the region where the initial
I-TASSER models had TM-scores above 0.5, which
largely corresponds to models with correct folds [25].
More specifically, for initial models with correct fold
(TM-score≥ 0.5), the improvement was significant
with ap-value = 1.7E-46between theEM-Refiner and
I-TASSER results, where the average TM-score
increased 10.5% from 0.746 (I-TASSER) to 0.824
(EM-Refiner). For initial models with incorrect fold
(TM-score < 0.5), however, the improvement was
much less significant (the average TM-scores were
0.368 and 0.365 for EM-Refiner and I-TASSER,
respectively, corresponding to a p-value of 0.75).
This happened mainly due to the special energy
landscape of EM-Refiner, which is dominated by the
structure and density map correlation coefficient (CC,
see Methods), where CC and the TM-score have a
pronounced correlation only when the TM-score is
high (Figure 4). Apparently, with such golf-course like
energy landscape, it is likely the initialmodels could be
driven in a correct direction toward the native, if the
initial predicted model is of correct fold and with the
starting point near the native basin of the landscape
[26–28].On the other hand, if the initialmodel is further
away from the native, the current energy landscape
lacks a long-range energy funnel to guide the
conformational search toward the native energy
basin and therefore fails on structural refinements.
However, we did notice a few cases where EM-

Refiner pushed the initial models with incorrect folds
toward the correct folds. Figure S3 shows an
illustrative example of this (T0892_dom1) from the
UDO-Glucose Glycoprotein Glucosyltransferase of
Chaetomium thermophilum double mutant D611C:
Figure 4. The correlation coefficients (CC) to the EM
densitymap versusTM-score of the initialmodels for the 278
test proteins. The dashed-dotted line divides themodels into
two regions with TM-score below and above 0.5, where the
solid lines represent the fitting results by linear regression for
the samples in the two regions. The Pearson correlation
coefficients between CC and TM-score are −0.128 and
0.620, respectively, in the two regions.
G1050C (PDBID: 5NV4). This is a small domain with
69 residues and the resolution of the simulated
density map was 5.0 Å. For this target, I-TASSER
built an initial structure with an incorrect fold (TM-
score = 0.37), and EM-Refiner pushed the model
toward the correct fold with a TM-score of 0.53; this
suggests that the inherent knowledge-based force
field of EM-Refiner is probably capable of refining the
structural model for some small proteins, when
coupled with cryo-EM data, although the procedure
failed in most other cases.
In Figure 4, we present the CC versus TM-score

for the initial models of the 278 test proteins following
superposition. The figure shows that CC has a
largely golf course-like landscape, where a strong
Pearson correlation coefficient (PCC) of 0.620
between CC and TM-score occurs when the decoys
have a model close to the target structure (typically
with a TM-score above 0.5). When the decoys are
further away from the native structure, the correlation
becomes negligible, corresponding to a PCC of
−0.128 in the region where the TM-score is <0.5. A
similar tendency can be seen in Figure S4 when we
list all the decoy conformations from the EM-Refiner
Monte Carlo simulations, in which PCC vanishes in
the regions with TM-scores below 0.5. Therefore,
when the initial models have incorrect folds, as
shown in Figure 3, the EM-Refiner simulation cannot
be efficiently guided by EM density map data to
identify correct conformations. This also explain the
poor performance of the initial model-density map
superposition procedure for the incorrectly predicted
I-TASSER models, since the procedure is purely
driven by the CC score, which cannot correctly guide
the search toward the correct superposition. Devel-
opment of efficient approaches, such as those that
use long-range, deep-learning-based contact and
distance maps [29,30], may help draw the structures
into the correlation zone.

Control results compared to Flex-EM and Rosetta

As a control, we present in Table 1 and Figure 3 the
results from two other commonly used density map-
based refinement methods, Rosetta [13] and Flex-EM
[12]. For Rosetta, the protein structure PDB file,
cryo-EM density map file, density map resolution
option, refinement protocol file and other parame-
ters were set up following the tutorial instructions,
and the default values were used for all other
parameters. For Flex-EM, the voxel size, origin of
the density map and rigid body file were also
provided, along with the above input files, with all
the parameters set to their default values following
the Flex-EM tutorial. The data of voxel size and
origin of the density maps were obtained from the
head file of each density map, with the rigid body
files identified by RIBFIND [31]. The Hierarchical
flexible fitting was implemented for Flex-EM to

Image of Figure 4


Figure 5. Illustrative example of refinement using simulated experimental data at a resolution of 5 Å for a single domain
of 2gzaC. (a) Cartoons show the initial model from I-TASSER (green), the EM-Refiner models after Step-2 (cyan) and
Step-3 (blue), and the native structure (red) overlaid on the density map (gray). (b) Cartoons show the superposed model
from I-TASSER (green), Flex-EM refined model (magenta), Rosetta refined model (yellow), the EM-Refiner model (blue),
and the native model (red) overlaid on the density map (gray). The EM-Refiner model had a TM-score of 0.921, an RMSD
of 1.35 Å to the native structure and a CC of 0.811 with the density map, compared to a TM-score of 0.743, an RMSD of
5.25 Å and a CC of 0.641 for the Flex-EM model and a TM-score of 0.800, an RMSD of 4.52 Å and a CC of 0.733 for the
Rosetta refined model.
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reduce the overfitting. Since both Flex-EM and
ROSETTA do not automatically generate initial
model and model superpositions, we used the
same I-TASSER models as the starting point and
applied the same superposed models from the EM-
Refiner Step-1 program (see Methods), to ensure a
fair comparison. Similarly, the density maps also
came from the same simulated noise-free maps
produced by the EMAN2 program, with resolutions
ranging from 5 to 10 Å as listed in Table S3 of the SI.
On average, although both of the control methods

were able to achieve some level of success at
refining the initial I-TASSER models, Rosetta signif-
icantly outperformed Flex-EM, while the magnitude
of the improvement by EM-Refiner was larger than
both programs. If we directly compare EM-Refiner
and the control methods, the average TM-scores
were 0.779, 0.761 and 0.714 for EM-Refiner,
ROSETTA and Flex-EM, respectively, where the p-
values between EM-Refiner and the control methods
were all below 0.05, showing the differences were
statistically significant (Table 1).
To examine the robustness of EM-Refiner, we also

tested it on simulated, noisy density maps, where
Gaussian noises were introduced, with a standard
deviation of 0.01 and an average of 1, to the simulated
density maps of the 278 test proteins using Xmipp
[32,33]. Compared to the noise free density maps, the
model quality of EM-Refiner with the noisy density
maps is slightly reduced, with the average TM-score
and RMSD being 0.776 and 4.76 Å, respectively.
Nevertheless, the EM-Refiner models compare favor-
ablywith the control programs that haveTM-scoreand
RMSDof 0.760 and 4.77 Å for Rosetta, and 0.712 and
5.43 Å for Flex-EM, respectively. The differences
were statistically significant with p-values of
3.1 × 10−3 and 8.3 × 10−46 for EM-Refiner versus
Rosetta and Flex-EM, respectively, as calculated by
two-tailed Student's t-tests between the TM-scores.
These results suggest that EM-Refiner could outper-
form Rosetta and Flex-EM with noisy density maps.
Figure 5 shows an illustrative example of a single

domain of the VirB11 ATPase from the Brucella suis
type IV secretion system in complex with sulfate
(PDBID: 2gzaC), where the resolution of its simulat-
ed density map was 5 Å. For this target, I-TASSER
built an initial structure with a correct fold (TM-
score = 0.734), and EM-Refiner put the model in a
marginally correct position by rigid-body density map
superposition with a CC of 0.567 between the
superposed model and density map. After the
Step-2 fragment adjustment simulations, EM-
Refiner created a significantly refined model with a
TM-score of 0.900 and an RMSD of 1.43 Å, where
the CC increased to 0.794. The Step-3 atomic-level
refinement simulations further increased the TM-
score to 0.921 and reduced the RMSD to 1.35 Å,
where the CC increased to 0.811 accordingly. As
shown in Figure 5(a), the major improvements by
EM-Refiner following Step-2 were in the regions with
poor local CC scores, where the fragment adjust-
ment procedure identified and correctly adjusted

Image of Figure 5
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these regions into the density map. After Step-3, the
conformation was further improved in terms of TM-
score, RMSD and CC, demonstrating the usefulness
of the atomic-level simulations for detailed local
structure refinement. For this same target, the Flex-
EM model had a TM-score of 0.743, a CC of 0.641
and an RMSD of 5.25 Å, while the Rosetta model
had a TM-score of 0.800, a CC of 0.733 and an
RMSD of 4.52 Å (Figure 5(b)). This example
highlights the importance and effectiveness of the
hierarchical three-step refinement procedure utilized
by EM-Refiner, which helps achieve a more signif-
icant model improvement based on the EM-density
data over the control methods.

Impact of initial model superposition on final model
quality

Current programs cannot always identify the best
structural superposition onto the EMdensitymaps. To
examine the impact of initial model superposition on
the final model quality, we list in Table 1 (right column)
the structural refinement results when each program
started from the optimal superstition obtained by the
TM-score program, which directly superposed the I-
TASSER models onto the target structures. The
results showed that better initial model superposition
can indeed result in improved refinement quality.
Quantitatively, the average EM-Refiner TM-score
increased from 0.779 to 0.796, which corresponds to
a p-value of 3.2E-10. Furthermore, the quality of the
models produced by Rosetta and Flex-EM also
improved with TM-score increases from 0.761 and
0.714 to 0.780 and 0.718, respectively. Nevertheless,
the TM-score of EM-Refiner was still significantly
higher than Rosetta and Flex-EM with p-values of
3.7E-5 and 1.8E-41, respectively.
In Figure S5, we provide a detailed comparison

between EM-Refiner models and the initial I-
TASSER models, where EM-Refiner started from
the optimal superpositions by the TM-score pro-
gram. Interestingly, nearly all of the EM-Refiner
models (except for 3 out of the 278 cases) had better
TM-scores than the corresponding initial I-TASSER
models, including those cases where the initial
model had an incorrect fold (TM-score < 0.5). It is
worth noting that for the initial models with TM-
scores <0.5, the TM-score-based superposition did
not have a perfect overlap with the density map.
Given the approximately correct orientation of the
initial conformations, however, EM-Refiner could still
draw the conformations closer to native with the aid
of the physics-based force field, although the CC
term did not have a strong correlation with the model
quality in this region as shown in Figure 4.
Accordingly, there were a higher number of cases
for which EM-Refiner outperformed the two control
methods, compared to the models starting from
predicted superpositions. This was particularly true
for the cases with initial I-TASSER models with TM-
scores <0.5, showing the efficiency of EM-Refiner at
refining low-to-medium resolution models after cor-
rect model superposition.

Case studies on refining atomic structure using
experimental cryo-EM density maps

While the above tests were based on simulated
map data for the target structures, here, we tested
EM-Refiner on two examples using experimental
density maps. One example is from GroEL (EMD-
2221) [34] in the EMDB, for which both its fitted and
target structures have been released; the second is
from the Ash2L domain of a recently solved human
MLL1 core complex [35], for which EM-Refiner was
applied for cryo-EM map-guided structure refine-
ment. To obtain the initial structures that were used
as input to EM-Refiner, we first extracted the
sequences from the native structures. Next, we
predicted the atomic structures starting from the
sequences using I-TASSER, excluding homologous
templates with ≥30% sequence identity to the query.
For the experimental density map of Ash2L, which
does not have a released structure in the PDB
database, we estimated the accuracy using the
correlation coefficient between the predicted struc-
ture and the density map.

Refining a single domain protein from GroEL

GroEL is a protein of high interest in the field of
biosensors for gut microbiota sensing and has been
utilized in sublingual vaccination against various
disorders including atherosclerosis, diarrhea and
colitis [36]. The density map of GroEL with an 8.4 Å
resolution was taken from the EMDB using code
EMD-2221 [34]. Next, a single domain density map
of GroEL was segmented from EMD-2221 using
UCSF Chimera [14]. The corresponding native
structure was obtained from the PDB (the residue
numbers were 190 to 338 from chain D of the PDB
ID: 2ynj).
From the query sequence, I-TASSER created a

model with a TM-score of 0.709 to the native
structure. The EM-Refiner Step-1 program super-
posed the model to the GroEL density map and
achieved a cRMSD of 4.04 Å and a CC of 0.701
(Figure 6). After EM-Refiner refinement, the TM-
score of the final model increased to 0.771, where
the RMSD and CC improved to 3.19 Å and 0.835,
respectively. We also ran Rosetta starting with the
same initial superposition, which resulted in a refined
model with a lower TM-score of 0.729. Additionally,
compared to EM-Refiner, both the RMSD (3.34 Å)
and CC (0.824) of the model produced by Rosetta
were slightly worse. Given that the overall correlation
between the model and density map for EM-Refiner
and Rosetta was largely equivalent at the resolution



Figure 6. Refinement of a single domain of the GroEL protein based on an 8.4 Å experimental EM density map. The
refined model by EM-Refiner (blue) is overlaid onto the density map (gray) with a correlation coefficient (CC) of 0.835 and a
TM-score of 0.771 to the native structure (red). As a comparison, the initial I-TASSER model (green) and the Rosetta
refined model (yellow) had CCs of 0.701 and 0.824 and TM-scores of 0.709 and 0.729, respectively.
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of the density map, the difference in model quality
was most likely not a result of EM-Refiner fitting of
the model with the density map. Rather, the
increased model quality by EM-Refiner can be
probably attributed to the effectiveness of the
inherent knowledge-based force field combined
with the CC score and the REMC simulation
strategy, which work harmoniously to perform the
atomic-level structural refinement. To further exam-
ine the local structure of the models, we plot in Figure
S7 the residue-level distance of the model to the
native. After TM-score superposition, the EM-
Refiner model has 97 residues whose Cα atom is
closer to the native than Rosetta while the Rosetta
model does so in 52 residues. In addition, the EM-
Refiner and Rosetta models have 82 and 47
residues, respectively, with a distance below 2 Å to
the native. These data show that EM-Refiner has
also a better local structure than Rosetta in this
example.
In Table S2, we provide a summary of the

modeling results by I-TASSER and the follow-up
EM density map refinement methods on an addi-
tional set of 5 proteins randomly selected from the
EMDB that have experimentally determined density
maps. For these five proteins, all the methods
(except for Flex-EM on EMD6708_dom2) achieved
some level of refinements over the I-TASSER
models. The average TM-score and RMSD of EM-
refiner was 0.815 and 7.78 Å, respectively, com-
pared to 0.800 and 8.55 Å for Rosetta and 0.711 and
8.63 Å for Flex-EM, respectively. The differences
were statistically significant with p-values of 0.05 and
0.01 for EM-Refiner versus Rosetta and Flex-EM,
respectively, as calculated by two-tailed Student's t-
tests between the TM-scores. These results show
that EM-Refiner outperforms Rosetta and Flex-EM at
structure refinement using experimental cryo-EM
density maps as well.
Refining Ash2L

Ash2L is a component of the Set1/Ash2 histone
methyltransferase complex, where human mixed
lineage leukemia (MLL) histone methyltransferases
utilize the Ash2L domain to anchor themselves to the
nucleosome core particle (NCP) [37]. The cryo-EM
structure of the humanMLL1 andNCP complex with a
6.2 Å resolution was most recently determined with
the aid of a former version of EM-Refiner by Park et al.
[35]. Although the interactions between the interface
residues (residues 205–207) in Ash2L and the
nucleosomal DNA were validated by Park et al., the
atomistic Ash2L structure remains to be solved
without a high-resolution density map. In the study,
we applied I-TASSER to build the initial model for the
human Ash2L domain, and then segmented the
density map from MLL1 using Chimera. Next, the I-
TASSER model of human Ash2L was superposed
and refined by EM-Refiner using the segmented
density map. Finally, the Ash2L model was fit,
together with other components of the human

Image of Figure 6


Figure 7. The fitting and refinement results for the Ash2L model into the cryo-EM density map of the human MLL1 and
nucleosome core particle (NCP) with 6.2 Å resolution. The final model of Ash2L by EM-Refiner (red color) has a correlation
coefficient (CC) of 0.696 with the density map, compared to the initial models from I-TASSER (green) with a CC of 0.517
(left panel).
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COMPASS complex taken from Park et al., into the
density maps to obtain the final atomic models after
removing clashes using UCSF Chimera.
Figure 7 shows the results of refinement and the

fitted model of the MLL1-NCP complex. The final
EM-Refiner model of Ash2L had a CC score of 0.696
with the experimental density map, which is slightly
higher than that of the I-TASSER predicted model
(0.517) and the refined model produced by Rosetta
(0.674). Apparently, in the absence of other exper-
imental structure information, it is difficult to objec-
tively assess if the EM-Refiner model is closer to the
native than the I-TASSER and Rosetta models,
despite the slightly higher CC score. However, this
case helps to illustrate how EM-Refiner can be used
to predict 3D atomic protein structures in order to
address the important, real-world biological prob-
lems, using medium- or lower-resolution density
maps.
Conclusion

Atomic-level protein structure refinement using
low-to-medium resolution cryo-EM density maps has
become an increasingly important means of obtain-
ing high-resolution structures. Many of the current
approaches address this challenge either by per-
forming rigid-body structure fitting, or through flexible
structure refinement simulations that require user-
specified initial model creation and density-map
superposition. Despite the success of some of
these methods, their usefulness and efficiency are
limited by the separation of the fitting and refinement
processes. In this work, we developed a new
protocol to integrate structural fitting and structural
refinement into a uniform pipeline that allows for
automatic prediction and refinement of protein
structures starting from amino acid sequences. The
test results on a large set of 285 (=278 + 7) protein
domains showed the significant advantages of the
protocol for atomic-level structure refinement com-
pared to many of the state-of-the-art methods. The
EM-Refiner program is freely available for download
and can be applied to large-scale, automated EM-
based structure prediction and refinement.
Despite the encouraging results, the EM-Refiner

pipeline is still more effective at refining structural
models with correct folds (typically with TM-scores
≥0.5) than those with incorrect folds. This constraint
stems essentially from the absence of correlation
between the density map/predicted model correla-
tion score and TM-score of the predicted models
when their TM-scores to native are below 0.5
(Figures 4 and S3). This absence of long-range
correlation significantly limits the accuracy of initial
model superposition, since the procedure is purely
driven by the CC between the model and density
map. Second, although our benchmark tests showed
that EM-Refiner is capable of refining low TM-score
models when starting from optimal model superpo-
sitions, the absence of correlation also limits the
flexible structure refinement simulations because the
force field is strongly weighted by the CC score in
addition to physics- and knowledge-based energy
terms. In this regard, the recent efforts utilizing deep-
learning-based contact and distance maps in the I-
TASSER pipeline [30,38] will be important to provide
improved initial models for non-homologous protein
targets. Meanwhile, developments of advanced
methods to improve the initial model and density
map superposition should also be key to help
improve the success rate of low-to-medium resolu-
tion EM-based structure prediction and refinement.

Image of Figure 7
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Currently, the EM-Refiner was trained and tested
on single domain proteins. For multi-domain protein
modeling, the user needs to utilize a segmentation
program, such as “Segment Map” in UCSF chimera
[14], to obtain density maps for each domain. EM-
Refiner can then be used for automated domain-
level structure fitting and refinements. Following the
structural modeling of individual domains, the user
can use DEMO [39], which was designed to
assemble multi-domain protein structures from
individual domains under the guidance of the inter-
domain distance profiles automatically searched
from homologous quaternary templates in the PDB.
Nevertheless, an optimal solution to cryo-EM-guided
multi-domain structural construction might be
through the integration of original density map data
with flexible domain refinement and inter-domain
assembly simulations; the work along this line is
under progress.
Methods

EM-Refiner consists of three steps of structure-to-
density map superposition, rigid-body fragment
adjustments, and atomic-level structure refinement,
where the pipeline is depicted in Figure 1.
Step 1: structure-density map superposition

Starting from an initial predicted structure pro-
duced by I-TASSER and a cryo-EM density map (in
MRC format), EM-Refiner first superposes the model
onto the EM density map by maximizing their
correlation coefficient. This procedure is performed
through a rapid REMC simulation [40], which is
guided by the energy E = 1 − CC, where CC is the
correlation coefficient between the model and
density map as defined in Eq. (3) below. The
REMC simulation contains N=20 replicas with the
temperature of the ith replica equal to

T i ¼ Tmin
Tmax

Tmin

� � i−1
N−1

ð1Þ

where Tmin = 0.01 and Tmax = 1.0 are the minimum
and maximum temperatures respectively. To ensure
diversity, each replica starts from a separate initial
superposition pose, with movements composed of
rigid-body rotation and translation of the initial model.
Step 2: rigid-body fragment adjustment

The conformation with the highest CC to the density
map is selected from the REMC simulations for the
next step of flexible structure refinement. Due to the
errors in the I-TASSER models, the superposed
conformations often have parts of fragments sticking
outside their density maps. Since residue-level
movements can break down the local secondary
structures and reduce the efficiency of refinement, we
employ a coarse-grained, fragment-level adjustment
to rapidly shift the fragments into the densitymap. This
process is performed by a simulated annealing Monte
Carlo (SAMC) simulation [41]. Here, a fragment is
defined as a region with regular secondary structure
(α-helix or β-strand) and the movements, including
rigid-body fragment rotation and translation, use the
two end loops as the hinge points. For the fragments
outside the density map, the length is expanded to
include all residues that have a CC below 0.05, in
order to enhance the simulation and movement
efficiency. To calculate the CC for individual residues,
the summation in Eq. (3) only includes the grids that
have a distance below 8 Å. The SAMC simulation
uses 30 × 20 × 500 steps (i.e., a target has 30
annealing repeats each with 20 temperatures that
range from 2 to 0.01 following Eq. (1), and 500
movements are attempted at each temperature). The
full-atomic energy as defined in Eq. (2) below is
employed to guide the SAMC simulation.
Step 3: atomic-level refinement

Five low-energy decoys are selected from Step-2
for atomic-level structure refinement, which is also
performed using SAMC simulations. Here, 50 anneal-
ing repeats are performed, and each annealing repeat
involves 30 temperatures ranging from 1 to 0.001 as
calculated by Eq. (1) with 500 MC movements
attempted at each temperature. Five runs are
conducted, each starting fromadifferent conformation
from Step-2. The model is finally selected from the
conformation with the lowest energy, which is
submitted to FG-MD [28] for steric clash removal
and atomic structure construction. We also tried
model selection based on clustering [42], but it
produced slightly worse results. The atomic-level
refinement includes six movements (M1–M6) as
illustrated by the upper-right panel of Figure 1, i.e.,
M1 rotates a randomly selected fragment around a
random axis centered at the N or C terminus of the
fragment; M2 shifts the conformation of four residues
(i + 1, i + 2, i + 3, and i + 4) along the sequence by
one residue; M3 is similar to M1 but with the rotation
center located at the middle of the selected fragment;
M4 rotates the conformation vertically with the rotation
axis oriented from the N- to C-terminal region of the
fragment; M5 translates a selected fragment a short
distance along a random direction; finally, M6
randomly perturbs the coordinate of one residue of a
fragment followed by local structure recovery. In case
a movement results in residue discontinuity (normally
at the ends of themoved fragments), a randomwalk is
performed to connect the residues.
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EM-Refiner force field

The energy function used to guide steps 2 and 3 of
the EM-Refiner program is a linear combination of
six energy terms:

Emain ¼ w1Εcc þ w2Εcl þ w3Εhb þ w4Εbl

þ w5Εtor þ w6Εref ð2Þ
where Ecc = 1 − CC and CC is the correlation
coefficient between the calculated and experimental
density maps, i.e.

CC ¼ ∑g ρc gð Þ−ρc½ � ρe gð Þ−ρe½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑g ρc gð Þ−ρc½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑g ρe gð Þ−ρe½ �2

q ð3Þ

Here, ρe(g) is the experimental density map at the
g-th grid point; ρc(g) is the density map calculated
from the decoy conformation by

ρc gð Þ ¼ ∑N
i α exp −β x i−xg

�� ��2� �
ð4Þ

where xi and xg are the coordinates of the i-th atom
and g- th gr id point, respect ively. β = [π /
(2.4 + 0.8R0)]

2 and α = m(β/π)1.5, where m is the
atom mass and R0 is the resolution of the density
map, following Topf et al. [12].
The second term in Eq. (2) is the Lennard–Jones

potential, which accounts for the van der Waals
interactions:

Εcl ¼ ∑i > jεij
r ij
d ij

� �12

−2
r ij
d ij

� �6
" #

ð5Þ

where dij is the distance between atoms i and j; εij
and rij are the well depth and the sum of the two
atoms' radii, respectively, which are taken from
CHARMM19 [43].
Εhb is the main-chain hydrogen bonding energy

adopted from QUARK [44]. Here, four geometric
features are considered for a residue pair (i and j,
Figure S6), including the distance between Oi and
Hj (dOH), the inner angle of Ci − Oi − Hj (ACOH), the
inner angle of Oi − Hj − Nj (AOHN), and the torsion
angle of Ci − Oi − Hj − Nj (TCOHN) (the torsion
angle term is only used for helical residues). The
H-bond energy is calculated by as follows

Ehb ¼ ∑i > j∑4
k¼1

Fk i ; jð Þ−Fk
� 	2

2σ2
k

ð6Þ

where Fk(i, j) denotes the kth feature for the
candidate residue pair (i, j). Fk and σk are the
mean and standard deviation of the kth feature,
respectively, which were calculated from 3881
high-resolution X-ray PDB structures with their
values listed in Table S1.
Ebl is a bond-length potential calculated by

Ebl ¼ ∑i > jκ i ;iþ1 di ;iþ1−d0

 �2 ð7Þ

where di, i+1 is the distance between neighboring
heavy atoms connected by a covalent bond. The
parameters for statistical bond-length d0 and the
force constant κ were taken from CHARMM [43].
Etr is a main-chain dihedral torsion potential

calculated by

E tr ¼ −
XL−1
i¼2

log P ϕi ;ψi jA ið Þ;S ið Þð Þð Þ ð8Þ

where ϕi/ψi are the Ramachandran torsion-angle
pair for residue i, and P(ϕ, ψ |A, S) is the conditional
probability of ϕ and ψ given the residue type A and
the secondary structure type S, which was taken
from the QUARK force field [44].
Finally, Eres is designed to constrain the structural

differences between the decoys and the initial model
by

E res ¼
X

i ; j∈G; j−i > 1

dd
ij −d

i
ij

��� ��� ð9Þ

where G represents all residue pairs that have Cα–
Cα distances below 8.0 Å in the initial model; dij

d and
dij
i are the Cα–Cα distances in the decoy and initial

model, respectively.
The weight parameters are set to w1 = 520, w2 =

1.0, w3 = 0.8, w4 = 1.0, w5 = 0.6, w6 = 10, which
were tuned using a training set to balance the
contributions of the different energy terms in Eq. (1).
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