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Supporting Texts 
 

Text S1: Monomer Evolutionary Energy Calculation 
The monomer evolutionary energy, 𝐸3456575839, is calculated as the best match between the 

designed sequence and the scaffold structure using the Needleman-Wunsch dynamic programming 
(DP) algorithm [1]. More specifically, a 2D DP matrix, 𝐷(𝑖, 𝑗), is defined where i and j are the 
positions along the designed and scaffold sequences, respectively. The value of 𝐷(𝑖, 𝑗) is equal to 
the ending value of the best path with the highest matching score towards the lattice (𝑖, 𝑗). Here, a 
path in the matrix corresponds to an alignment between the designed and scaffold sequences. Thus, 
the 𝐸3456575839 is the value at 𝐷(𝐿A, 𝐿B), where 𝐿A and 𝐿B are the lengths of the designed and 
scaffold sequences, respectively. Note, in EvoDesign 𝐿A and 𝐿B are equivalent, although it can be 
potentially applied to design sequences with a different length from the scaffold. The DP procedure 
allows gaps in the alignment between the designed and scaffold sequences, depending on the 
alignment score. 

Given a gap penalty scheme of 𝑤(𝑘) = 𝑔5 + (𝑘 − 1)𝑔3, where k is the gap length, and 𝑔5 and 
𝑔3 are the gap opening and gap extension penalties, respectively, the initialization of the DP matrix 
can be written as 

J
𝐷(0,0) = 0
𝐷(0, 𝑗) = 𝑗 ∗ 𝑔3						𝑓𝑜𝑟	0 < 𝑗	 ≤ 𝐿B
𝐷(𝑖, 0) = 𝑖 ∗ 𝑔3						𝑓𝑜𝑟	0 < 𝑖	 ≤ 𝐿A										

																													(𝑆1) 

The remaining elements in the DP matrix are calculated by the recurrence equation: 

𝐷(𝑖, 𝑗) = maxW

𝐷(𝑖 − 1, 𝑗 − 1) + 𝐸8XYZ[(𝑖, 𝑗)
max
A\]\^

[𝐷(𝑖 − 𝑘, 𝑗) + 𝑤(𝑘)]

max
A\]\a

[𝐷(𝑖, 𝑗 − 𝑘) + 𝑤(𝑘)]
																																	(𝑆2) 

where the matching score between i and j is defined by 

𝐸8XYZ[(𝑖, 𝑗) = 𝑀(𝑗, 𝑎𝑎^) + 𝑤AΘff(𝑖, 𝑗) + 𝑤BΘfg(𝑖, 𝑗) + 𝑤hΘi(𝑖, 𝑗) + 𝑤jΘk(𝑖, 𝑗)							(𝑆3) 

Here, 𝑎𝑎^  is the amino acid for the 𝑖Y[  residue of the designed sequence and 𝑀(𝑗, 𝑎𝑎^) is the 
structural profile, represented by an 𝐿B × 20  matrix, specifically, 𝑀(𝑗, 𝑎𝑎^) =
∑ 𝐵(𝑎𝑎^, 𝑥)𝐻(𝑗, 𝑥)Br
stA . Here, 𝐵(𝑎𝑎^, 𝑥) is the BLOSUM62 mutation score for mutating 𝑎𝑎^  to 

amino acid 𝑥  [2]. Additionally, 𝐻(𝑗, 𝑥) = ∑ ℎ(𝑚)wx
y

8tA , where 𝑓s
a  is the frequency with which 

amino acid x appears at the 𝑗Y[  position of the multiple sequence alignment (MSA) that was 
constructed by TM-align [3] by structurally searching the scaffold against the PDB library. Lastly, 
ℎ(𝑚) is the Henikoff weight of the 𝑚Y[ template sequence in the MSA. The higher (more positive) 
the value of 𝑀(𝑗, 𝑎𝑎^), the more favorable the mutation is between residue i of the designed 
sequence and residue j of the scaffold protein. 

The remaining terms in Eq. S3 measure the local structural similarities between the designed 
sequence and the scaffold protein. The secondary structure (SS), solvent accessibility (SA), and 
backbone torsional angles (𝜙,𝜓) for the designed sequence are predicted using the fast machine 
learning-based methods described previously [4], while those for the scaffold structure are 
assigned by DSSP [5]. More specifically, these terms are defined as follows:  



⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
Θff(𝑖, 𝑗) = J

1,							if	𝑆𝑆(𝑖) = 𝑆𝑆(𝑗)
0,							else	if	𝑆𝑆(𝑖)	𝑜𝑟	𝑆𝑆(𝑗)	is	coil
−1,				otherwise

Θfg(𝑖, 𝑗) = J
1,							if	𝑆𝐴(𝑖) = 𝑆𝐴(𝑗)
0,							else	if	𝑆𝐴(𝑖)	𝑜𝑟	𝑆𝐴(𝑗)	is	intermediate
−1,				otherwise

Θi(𝑖, 𝑗) =
−min{|𝜙(𝑖) − 𝜙(𝑗)|, 360 − |𝜙(𝑖) − 𝜙(𝑗)|}

180
	

Θk(𝑖, 𝑗) =
−min{|𝜓(𝑖) − 𝜓(𝑗)|, 360 − |𝜓(𝑖) − 𝜓(𝑗)|}

180

														(𝑆4) 

Here, SS is divided into three states: 𝛼-helix, 𝛽-strand or coil. Additionally, SA is categorized into 
three states: buried, intermediate or exposed based on its depth in the protein structure. The values 
for the weights 𝑤A , 	𝑤B , 𝑤h , and 𝑤j  are 1.58, 2.45, 1.00, and 1.00, respectively, which are 
proportional to the relative accuracy of the SS, SA, and 𝜙/𝜓 feature predictors for a set of 625 
non-redundant training proteins [6]. 
 
Text S2: Interface Evolutionary Energy Pseudocount 

To offset the smaller size of the interface library, a pseudocount was introduced into the 
evolution-based interface potential by the BindProfX approach [7]: 

𝑁��3��5(𝑎𝑎^, 𝑖) = 𝑁w^s + 𝑁�X� + 𝑁345 = 25 + 15𝑛�X�(𝑖) + 5�
𝑁5 �(𝑥, 𝑖)
𝑁Y5Y

𝑀(𝑥, 𝑎𝑎^)	
Br

stA

		(𝑆5) 

where the first term, 𝑁w^s, is a constant parameter whose value is set to 25. The second term, 𝑁�X�, 
is a gap dependent pseudocount that is proportional to the number of gaps, 𝑛�X�(𝑖) , at the 
𝑖Y[	position of the iMSA. The final term is the evolutionary pseudocount, 𝑁345, which takes into 
account amino acids that are related to the wild type and mutant residues in the interface 
alignment.	¡¢£¤(s,^)

¡¥¢¥
 is the frequency with which an amino acid 𝑥 appears at position 𝑖 in the iMSA 

and 𝑀(𝑥, 𝑎𝑎^) is the interface probability transition matrix score for amino acid 𝑥 mutating to 
residue 𝑎𝑎^. 

Since the iMSA contains homologous sequences only from the PDB, its depth depends on the 
number of interface structural homologs detected. We previously found [7] that the average 
number of interface structural homologs was around five. This is much smaller than the size of the 
pseudocounts, indicating that the pseudocounts are quite important to calibrate the amino acid 
occurrence probabilities. The overall Pearson correlation coefficient (PCC) between experimental 
and predicted ΔΔ𝐺 ^7�^7�¨©→8�Y values was 0.685 for the BindProfX benchmark on the overall dataset. 
However, for those targets with only one or two structurally similar interfaces, the PCC was 0.207 
without pseudocounts, indicating that the amino acid occurrence probabilities were unreliable 
when there were too few interface homologs. With pseudocounts applied, the PCC increased from 
0.207 to 0.323.  
 
Text S3: Dataset Construction and EvoEF Parameter Optimization 

To compute the energy of a protein, EvoEF splits the total energy into the sum of three parts: 
the non-bonded atomic interactions within a residue (𝐸^7Y9X«3�^��3), between different residues 



within the same chain (𝐸^7Y39«3�^��3fX83¬[X^7 ), and between different residues from different 
chains (𝐸^7Y39«3�^��3^ww¬[X^7), i.e., 

 
𝐸®45®¯ = 𝐸𝑖𝑛𝑡𝑟𝑎𝑅𝑒𝑠𝑖𝑑𝑢𝑒 + 𝐸𝑖𝑛𝑡𝑒𝑟𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑆𝑎𝑚𝑒𝐶ℎ𝑎𝑖𝑛 + 𝐸𝑖𝑛𝑡𝑒𝑟𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝐷𝑖𝑓𝑓𝐶ℎ𝑎𝑖𝑛 − 𝐸𝑟𝑒𝑓
														= {𝐸4�· + 𝐸3¸3Z + 𝐸¹º + 𝐸�5¸4}^7Y9X«3�^��3
																	+{𝐸4�· + 𝐸3¸3Z + 𝐸¹º + 𝐸�5¸4}^7Y39«3�^��3fX83¬[X^7
																	+{𝐸4�· + 𝐸3¸3Z + 𝐸¹º + 𝐸�5¸4}^7Y39«3�^��3^ww¬[X^7
																	−𝐸93w

												(𝑆6) 

 
where 𝐸4�·, 𝐸3¸3Z, 𝐸¹º and 𝐸�5¸4 are the same as defined in Eqs. (3-8) in the main text. Overall, 
EvoEF uses eight energy terms each for 𝐸^7Y39«3�^��3fX83¬[X^7  and 𝐸^7Y39«3�^��3^ww¬[X^7 , and 
only six terms for	𝐸^7Y9X«3�^��3, as intra-residue 𝐸¹º�� and 𝐸¹º   do not exist. Thus, there are a 
total of 56 parameters that need to be optimized in EvoEF, including 8 weights for 𝐸^7Y9X«3�^��3, 
14 weights for 𝐸^7Y39«3�^��3fX83¬[X^7, 14 weights for 𝐸^7Y39«3�^��3^ww¬[X^7, and 20 amino acid 
reference energies. 
 
Text S3.1 Dataset construction 

We used two types of experimental data, based on the mutation-induced protein stability and 
binding affinity changes, to train and test EvoEF. The mutation-induced protein stability change 
data were collected from the FoldX [8] and STRUM [9] datasets, which contain 1,056 and 3,421 
mutants, respectively. After filtering out the duplicated mutants in identical structures, a total of 
3,989 non-redundant mutants from 210 proteins were retained, where 3,978 were single mutations 
and 11 were multiple mutations. Half of the 3989 mutants were randomly selected as the training 
set (with 1995 mutants) and the other half as the testing set (with 1994 mutants). 

Here, we note that the FoldX dataset has an overrepresentation of mutations from larger 
residues to smaller ones. Out of the 1,056 data samples, 1,015 are from larger-sized amino acids 
to smaller ones, while only 41 are from smaller to larger-sized amino acids. This trend is less 
obvious in the STRUM dataset, where 2,568 out of 3,421 mutation samples are from larger to 
smaller amino acids and 853 are from smaller to larger amino acids. The bias present in the FoldX 
dataset may result in overestimation of the mutation correlations. For example, the Pearson 
correlation coefficient between the predicted and experimental stability change data for the FoldX 
potential on the FoldX dataset is 0.688, which is reduced to 0.446 for the STRUM dataset. 

For the second set of benchmark data, experimental mutation-induced binding affinity changes 
were collected from the SKEMPI v2.0 database [10], which contains 7,085 mutation entries in 
total. The training and test datasets were constructed as follows. First, we discarded mutants whose 
corresponding structures contained three or more chains. Second, we removed mutants with non-
interface residues. Here, an interface residue is defined as a residue that has at least one heavy 
atom within 5.0 Å of the other chain in a protein complex. When there were multiple entries for 
the same mutant, the average	ΔΔ𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑊𝑇→𝑚𝑢𝑡 value was calculated. After filtering the dataset, a total 
of 2,204 mutants from 177 protein-protein interfaces were retained. Again, half the 2,204 mutants 
were randomly selected as the training set (with 1102 mutants) and the other half as the test set 
(with 1102 mutants).  

In order to predict the binding affinity and stability change upon mutation, the native structures 
were minimized, and the mutant models were generated using the following steps (the information 
for each command can be found in Text S5): 

 



Step 1: For ΔΔ𝐺�YX ^¸^Y¾¨©→8�Y and ΔΔ𝐺 ^7�^7�¨©→8�Y predictions, we extracted the single target chain or 
the two target amino acid chains, respectively, from the PDB file of the crystal structure and 
discarded water molecules and ligands that were not amino acids. 
 

Step 2: We optimized the structure of the wild type protein/complex using EvoEF’s 
“RepairStructure” command as follows: 
  

./EvoEF --command=RepairStructure --pdb=wildtype.pdb 
 

Following this command, the minimized wild type protein/complex was output into a file 
named ‘wildtype_Repair.pdb’ and this minimized model was used as the initial structure to 
build the mutant model. 
 

Step 3: We built a structural model of the mutant protein/complex using EvoEF’s “BuildModel” 
command as follows: 
 

./EvoEF --command=BuildMutant --pdb=wildtype_Repair.pdb --mutant-file=individual_list.txt 
 

The file “individual_list.txt” contained the list of mutation(s). Following this command, a new 
file “wildtype_Repair_Mutant_1.pdb” was generated, which contained the modelled mutant 
structure.  
 

Step 4: We computed the stability of the wild type and mutant proteins using EvoEF’s 
“ComputeStability” command as follows: 
 

./EvoEF --command=ComputeStability --pdb=wildtype_Repair.pdb 

./EvoEF --command=ComputeStability --pdb=wildtype_Repair_Mutant_1.pdb 
 

Or 
 

We computed the binding affinity of the wild type and mutant complexes using EvoEF’s 
“ComputeBinding” command as follows: 
 

./EvoEF --command=ComputeBinding --pdb=wildtype_Repair.pdb 

./EvoEF --command=ComputeBinding --pdb=wildtype_Repair_Mutant_1.pdb 
 
The above steps were used to minimize/construct the models and predict either the stability or 

binding affinity during EvoEF’s training/testing. However, to benchmark EvoEF against FoldX 
and to avoid potential bias in the scoring, for the FoldX tests, we minimized the structures using 
FoldX. The following steps were used to build the structural models and predict the 
stability/binding affinity energies for FoldX: 
 

Step 1: For ΔΔ𝐺�YX ^¸^Y¾¨©→8�Y and ΔΔ𝐺 ^7�^7�¨©→8�Y predictions, we extracted the single target chain or 
the two target amino acid chains, respectively, from the PDB file of the crystal structure and 
discarded water molecules and ligands that were not amino acids. 
 

Step 2: We optimized the structure of the wild type protein/complex using FoldX’s 
“RepairPDB” command:  
 

./foldx --command=RepairPDB --pdb=wildtype.pdb 
 



After this step, the minimized wild type protein/complex was output into a file named 
‘wildtype_Repair.pdb’ and this minimized model was used as the initial model to build the 
mutant model. 
 

Step 3: We built a structural model of the mutant protein using FoldX’s “BuildModel” 
command: 
  

./foldx --command=BuildModel --pdb=wildtype_Repair.pdb --mutant-file=individual_list.txt 
 

Here, “individual_list.txt” was a text file that contained the specified mutation(s). After this 
step, two files “WT_wildtype_Repair_1.pdb” and “wildtype_Repair_1.pdb” were generated. 
The former file was the wildtype structure with additional structural optimization, while the 
latter one was the mutant structure. Normally, “WT_wildtype_Repair_1.pdb” was the same as 
“wildtype_Repair.pdb”, and if not, their difference were quite small. 
  

Step 4: We computed the stability of the wild type and mutant proteins using FoldX’s 
“Stability” command: 
 

./foldx --command=Stability --pdb=WT_wildtype_Repair_1.pdb 

./foldx --command=Stability --pdb=wildtype_Repair _1.pdb 
 

Or 
 

We computed the binding affinity of the wild type and mutant complexes using FoldX’s 
“AnalyseComplex” command: 
 

./foldx --command=AnalyseComplex --pdb=WT_wildtype_Repair_1.pdb 

./foldx --command=AnalyseComplex --pdb=wildtype_Repair_1.pdb 
 
 

The stability and binding affinity change datasets, as well as the predicted ΔΔGs by FoldX and 
EvoEF can be found at: 
https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEFBenchmark.tar.gz.  

 
Text S3.2 Optimization of reference energies and weights for 𝑬𝒊𝒏𝒕𝒆𝒓𝑹𝒆𝒔𝒊𝒅𝒖𝒆𝑺𝒂𝒎𝒆𝑪𝒉𝒂𝒊𝒏  and 
𝑬𝒊𝒏𝒕𝒓𝒂𝑹𝒆𝒔𝒊𝒅𝒖𝒆 

The amino acid reference energies and the weighting factors for 	𝐸^7Y9X«3�^��3  and 
𝐸^7Y39«3�^��3fX83¬[X^7  were determined based on the stability change data (ΔΔ𝐺�YX ^¸^Y¾¨©→8�Y ) of 
monomeric proteins upon mutation. The protein stability change due to mutation is computed by 

ΔΔ𝐺�YX ^¸^Y¾¨©→8�Y = Δ𝐺�YX ^¸^Y¾8�Y − Δ𝐺�YX ^¸^Y¾¨© = 𝐸®45®¯8�Y − 𝐸®45®¯¨© 																																(𝑆9) 

where the wild type and mutant structural models are required to compute the physical energies. 
To this end, we first performed local energy minimization on the native crystal structures using 
the EvoEF energy minimizer and then built mutant models based on the minimized wild type 
structures using the steps described above. For doing so, EvoEF first scans the wild type structure 
in the order of amino acid occurrence and then optimizes the amino acid side-chains one-by-one. 
Several minimization cycles can be performed for the sake of convergence, but the default number 
of cycles is set to one. Based on our test, there’s not a large difference in the minimized structures 
when we set the number of cycles to two or more. To remove the possible steric clashes during the 
minimization procedure, EvoEF searches alternative rotameric conformations from a backbone-



independent rotamer library obtained from Xiang and Honig [11]. The rotamer library contains 
984 rotamers for the 20 amino acid types, and 1,007 rotamers if two tautomers of histidine are 
considered. In the library, the hydroxyl groups of serine, threonine and tyrosine are rotated to 
expand their rotamers by six, six, and two folds, respectively. Asparagine, histidine and glutamine 
are also flipped to construct better hydrogen bonding networks during energy minimization. The 
details of energy minimization, model building and ΔΔ𝐺 computation can be found in Text S5. 

Finally, the reference energies and parameters for	𝐸^7Y9X«3�^��3  and 𝐸^7Y39«3�^��3fX83¬[X^7 
were optimized by minimizing the objective function 𝐹 = ∑ ÐΔΔ𝐺^,�YX ^¸^Y¾,�93�¨©→8�Y −^

ΔΔ𝐺^,�YX ^¸^Y¾,3s�¨©→8�Y ÑB  over a set of experimental protein stability change data, where 
ΔΔ𝐺^,�YX ^¸^Y¾,�93�¨©→8�Y  and ΔΔ𝐺^,�YX ^¸^Y¾,3s�¨©→8�Y  were the predicted and experimental data for the 𝑖Y[ 
mutation in the dataset. More specifically, the objective function can be written as: 

𝐹 =�Ð∆∆𝐺^,�YX ^¸^Y¾,�93�¨©→8�Y − ∆∆𝐺^,�YX ^¸^Y¾,3s�¨©→8�Y ÑB

^

				= �ÓÔ�𝜔a∆∆𝐺^,�YX ^¸^Y¾,�93�¨©→8�Y (𝑗) + 𝐸93w¨© − 𝐸93w8�Y
a

Ö − ∆∆𝐺^,�YX ^¸^Y¾,3s�¨©→8�Y ×

B

^

												(𝑆7) 

where ∆∆𝐺^,�YX ^¸^Y¾,�93�¨©→8�Y (𝑗) was the EvoEF predicted stability change upon mutation for the 𝑗Y[ 
energy term, not considering the reference energy. 𝐸93w(𝑊𝑇) was the summed reference energy 
for the wild type sequence and 𝐸93w(𝑚𝑢𝑡)  was the summed reference energy for the mutant 
sequence. This is essentially a least squares optimization problem, which can be easily solved 
using simple algorithms such as least squares fitting, gradient descent and conjugated gradient 
methods. However, we found that the optimal weights for some terms decided by these methods 
could be negative and theoretically meaningless. Therefore, we implemented a Metropolis Monte 
Carlo procedure to re-optimize the parameters. During the procedure, the movement consisted of 
random changes to the parameters while the weights were restricted to be greater than or equal to 
zero. Parameter changes were accepted and rejected based on the Metropolis criterion, where F 
was the energy. The final reference energies and weights were chosen from the parameter set with 
the lowest F value over the training set. 
 
Text S3.3 Optimization of weights for 𝑬𝒊𝒏𝒕𝒆𝒓𝑹𝒆𝒔𝒊𝒅𝒖𝒆𝑫𝒊𝒇𝒇𝑪𝒉𝒂𝒊𝒏 

One of the major goals of this work is to extend the EvoDesign pipeline to design protein-
protein interactions. To achieve the best performance in computing the physical interactions in 
protein-protein interfaces, we used experimental binding affinity change (ΔΔ𝐺 ^7�^7�¨©→8�Y) data to 
train the weights for 𝐸^7Y39«3�^��3^ww¬[X^7. In EvoEF, the binding energy of a protein complex for 
scaffold A and its binding partner B is computed by 

Δ𝐺 ^7�^7� = 𝐸gº − 𝐸g − 𝐸º																																																(𝑆8) 

where 	𝐸gº , 𝐸g  and 𝐸º  are the stability scores for the complex and component monomers, 
respectively. The binding free energy change due to mutation is then written as 

ΔΔ𝐺 ^7�^7�¨©→8�Y = Δ𝐺 ^7�^7�8�Y − Δ𝐺 ^7�^7�¨© 																																		(𝑆9) 

The parameters for 𝐸^7Y39«3�^��3^ww¬[X^7 were decided by minimizing the objective function 
∑ ÐΔΔ𝐺^, ^7�^7�,�93�¨©→8�Y − ΔΔ𝐺^, ^7�^7�,3s�¨©→8�Y ÑB^  over the training set of experimental binding affinity 



change data, where ΔΔ𝐺^, ^7�^7�,�93�¨©→8�Y  and ΔΔ𝐺^, ^7�^7�,3s�¨©→8�Y  were the predicted and experimental 
data, respectively, for the 𝑖Y[ mutation in the SKEMPI training set described above. The same 
Metropolis Monte Carlo procedure was used to decide the parameters for 𝐸^7Y39«3�^��3^ww¬[X^7 
as was used to train the parameters for 𝐸^7Y39«3�^��3fX83¬[X^7  and 𝐸^7Y9X«3�^��3  as well as the 
reference energies. During the Monte Carlo search, the 42 previously optimized parameters were 
fixed. 

A list of the optimized weight parameters and reference energies are given in Tables S1 and 
S2 separately. 
 
Text S4: Decoy Discrimination 

In order to further validate EvoEF, we assessed its ability to discriminate native structures from 
decoy structures for the 200 non-redundant monomeric proteins in the 3DRobot Decoy Set [12]. 
For each protein, 300 decoys were generated by 3DRobot. The root mean squared deviations 
(RMSDs) of the structural decoys to the native ranged from 0 to 12 Å. We did two types of decoy 
discrimination tests: (1) discriminating the native structures from decoys according to the folding 
stability energy, and (2) discriminating near-native decoy structures (low RMSD decoys) from 
those with high RMSDs.  

In the first test, EvoEF correctly ranks the native protein as the lowest energy for each of the 
200 individual decoy sets, while FoldX does so in 198 cases. We also computed the Z-score of the 
native structure in each decoy set: 

𝑍7XY^43 =
⟨®⟩Þ®ßà¥áâã

ä®
																																																								(𝑆10)  

where 𝐸7XY^43 is the energy of the native structure, and ⟨𝐸⟩ and 𝛿𝐸 are the average and standard 
deviation of the energy function for all the structures in the decoy set. For EvoEF, the Z-score has 
value ranging from 2.25 to 8.09 for the 200 structures, while the Z-score for FoldX ranges from 
2.41 to 7.60. Since the Z-score has a high significance (>2) for all the cases, both FoldX and EvoEF 
were able to discriminate the native from non-native decoys with a sufficient gap for all the decoy 
sets, although EvoEF has a slightly larger variation range in Z-score. 

For the second test, we computed the Z-score of the near-native decoy structures, i.e., those 
with low RMSDs: 

𝑍77XY^43 =
⟨𝐸⟩[ − ⟨𝐸⟩¸

𝛿𝐸[
																																																					(𝑆11) 

where ⟨𝐸⟩¸ is the average energy for the 10% of decoys that have the lowest RMSD; ⟨𝐸⟩[ and 𝛿𝐸[ 
are the average and standard deviation of the energy function for all the rest of the structures in the 
decoy set. Since both low and high RMSD decoys are generated in silico and thus have similar 
local structural errors, it is much harder to recognize the near-native structures than to recognize 
the native structure that was determined experimentally and usually has idealized local structural 
features and side-chain packing. The average 𝑍77XY^43 for EvoEF was 1.959 with values ranging 
from 0.32 to 3.57, while that for FoldX was 1.844 with values ranging from 0.40 to 2.83. In 198 
cases, EvoEF has a 𝑍77XY^43 > 1, while FoldX has a 𝑍77XY^43 > 1 in 193 of the cases. These data 
suggest that EvoEF has a relatively better ability to recognize near-native structures from high 
RMSD structural decoys. 

Here, the decoys datasets were taken directly from the work of Deng et al. [12], which can be 
downloaded at: https://zhanglab.ccmb.med.umich.edu/3DRobot/decoys/. The decoy recognition 
data for EvoEF and FoldX can be found at: 
https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEFBenchmark.tar.gz.  

 



Text S5: Commands in EvoEF 
Several commands have been implemented in EvoEF, such as “RepairStructure”, 

“BuildMutant”, “ComputeStability”, “ComputeBinding”, and “OptimizeHydrogen”, to facilitate 
the use of the force field. 

Generally, these commands are performed using the following syntax: 
 

EvoEF --command=commandName --pdb=your.pdb [other options] 
 

Here, we describe the details of each of these commands. 
 
Text S5.1 Energy Minimization 

Energy minimization in EvoEF is performed using the command “RepairStructure”. Usually, 
the user-provided structural model or even the crystal structure can have steric clashes or bad 
hydrogen bonding networks. Moreover, sometimes side-chain atoms can be missing from the 
structural model. Therefore, it is important to fix the structure and do energy minimization to 
optimize the rotameric side-chain conformations for the clashed amino acids. Essentially, the 
global optimization of the amino acid side-chain conformations requires complete repacking of 
the side-chains, but this is not trivial. Instead of doing full side-chain repacking, EvoEF does fast 
local optimization of the initial model, either a crystal structure or a model predicted by structure 
modeling software, to remove steric clashes as much as possible. To do so, EvoEF first scans the 
user-input structure in the order of amino acid occurrence and then optimizes the amino acid side-
chains one-by-one. To remove the possible steric clashes in the user-provided structural model, 
EvoEF searches rotameric conformations from a backbone-independent rotamer library obtained 
from the work of Xiang and Honig [11]. The rotamer library contains 984 rotamers for 20 amino 
acid types, and 1,007 rotamers if two tautomers of histidine are considered. In the library, the 
hydroxyl groups of serine, threonine and tyrosine are rotated to expand their rotamers by six, six, 
and two folds, respectively. The asparagine, histidine and glutamine amino acids are also flipped 
for better hydrogen bonding evaluation. Several cycles of energy minimization can be performed 
for the sake of convergence and the best minimization results, but the default number of cycles is 
set to one. Based on our benchmarking, the difference between one or two or more minimization 
cycles is not that significant. The syntax to do energy minimization in EvoEF is: 

 

EvoEF --command=RepairStructure --pdb=model.pdb 
 

Successful execution of this command will generate a new structure file named 
“model_Repair.pdb”. In the minimized model, the optimized polar hydrogen coordinates are also 
shown. 
 
Text S5.2 Model Builder 

To compute the protein stability and binding affinity changes due to mutation, we need the 
experimental structure and the mutant model. Here, the experimental structure should be 
minimized as mentioned in the above section. We build a mutant model starting from the 
minimized wild type structure and mutate the amino acids at the specified positions one-by-one. 
During the mutation process, the amino acid side-chain conformations within 6 Å of each mutated 
position are repacked to alleviate possible steric clashes and optimize the local energies. The 
rotameric conformations for repacking and mutation are also taken from the above Xiang and 
Honig rotamer library [11]. The mutated structure is first built, then three cycles of local energy 
minimization are performed. The syntax to build mutant models in EvoEF is: 

 

EvoEF --command=BuildMutant --pdb=model_Repair.pdb --mutant-file=individual_list.txt 
 



where “model_Repair.pdb” is the minimized initial model, and “individual_list.txt” is a text file 
that specifies the desired mutation(s). In “individual_list.txt”, the mutations must be presented in 
the following format: 
 

 CA171A,DB180E; 
 

Each mutation is written in one line ending with “;”, and multiple mutants are divided by “,”. Note 
that there are no gaps/spaces between single mutations. For each single mutation, the first letter is 
the native amino acid, the second is the identifier for the chain that the amino acid appears on, the 
number is the amino acid’s position in the chain, and the last letter is the mutant amino acid. 
Running the command successfully should generate a new structure file named 
“model_Repair_Mutant_1.pdb”. In the mutant model, the optimized polar hydrogen coordinates 
are also shown. 
 
Text S5.3 Energy Computation 

In EvoEF, the protein stability energy can be calculated using the following command: 
 

EvoEF --command=ComputeStability --pdb=your.pdb 
 

Furthermore, binding affinity for protein-protein complexes can be calculated using the command: 
 

EvoEF --command=ComputeBinding --pdb=complex.pdb 
 

The energies for each term and the total energy will be output if the command is run successfully. 
 
Text S5.4 Other commands 

In the initial protein structures, such as the crystal structure or models obtained by different 
structure modelling software, polar hydrogens are usually not provided. However, the positions of 
polar hydrogens are important to model and calculate hydrogen bonding energy, which is crucial 
for the structural specificity that underlies protein folding, function, and interactions. Although 
backbone or side-chain polar hydrogens of some amino acid types can be determined by standard 
topologies from force fields such as CHARMM19 [13] and AMBER [14], the hydroxyl groups of 
serine, threonine and tyrosine are rotatable and the hydrogen positions cannot be decided by the 
topologies. In EvoEF, we implemented another command “OptimizeHydrogen” to find the 
hydrogen positions that optimize the hydrogen bonding network. Specifically, we build the 
rotamers for serine, threonine and tyrosine using their native conformations and expand the 
number of rotamers considered by rotating the hydroxyl groups. 
  



Supporting Tables 

Table S1. Weight Parameters for the EvoEF Force Field. 

Classification Energy terms Weight 
Intra-residue interaction Van der Waals attractive 0.0000 
 Van der Waals repulsive 0.1200 
 Coulomb’s electrostatics 0.0000 
 desolvP 0.0000 
 desolvH 0.0000 
 HBsb_dist 0.0000 
 HBsb_theta 0.0400 
 HBsb_phi 0.0012 
Inter-residue interactions in the same chain Van der Waals attractive 0.6076 
 Van der Waals repulsive 0.4968 
 Coulomb’s electrostatics 0.0000 
 desolvP 0.3008 
 desolvH 0.0322 
 HBbb_dist 0.3554 
 HBbb_theta 0.0000 
 HBbb_phi 0.0000 
 HBsb_dist 0.5452 
 HBsb_theta 0.2080 
 HBsb_phi 0.1600 
 HBss_dist 0.3036 
 HBss_theta 0.0800 
 HBss_phi 0.0000 
Inter-residue interactions in different chains Van der Waals attractive 0.6384 
 Van der Waals repulsive 0.7904 
 Coulomb’s electrostatics 0.0000 
 desolvP 0.4048 
 desolvH 0.3432 
 HBbb_dist 0.0000 
 HBbb_theta 0.7600 
 HBbb_phi 0.5000 
 HBsb_dist 0.0000 
 HBsb_theta 0.6552 
 HBsb_phi 0.5236 
 HBss_dist 0.7200 
 HBss_theta 0.6720 
 HBss_phi 0.5040 

  



Table S2. Amino Acid Reference Energies Decided for EvoEF Force Field. 

Amino acid Reference energy Amino acid Reference energy 
ALA 1.20 MET 1.00 
CYS 0.60 ASN 1.00 
ASP 1.20 PRO 0.96 
GLU 1.00 GLN 1.40 
PHE 2.00 ARG 0.72 
GLY 2.00 SER 1.20 
HIS 2.20 THR 0.80 
ILE -0.12 VAL 0.24 
LYS 1.20 TRP 2.60 
LEU 0.00 TYR 1.60 

  



Supporting Figures 
 

 
 

Figure S1: Shape of the Van der Waals Energy Between an Amide N and a Carbonyl C. The 
van der Waals radii for the amide N and carbonyl C are 1.7632 and 1.9649 Å, respectively, while 
their corresponding well-depths are 0.1617 and 0.1418 kcal/mol, respectively. 
 
  



 

 
 
Figure S2: Illustration of the Input Summary Section in the EvoDesign Output Page. The 
first section of the EvoDesign results page is a summary of the input, which is created immediately 
after submission of a job. It contains a description of the structural similarity cutoff (TM-score) 
used during the evolutionary profile construction along with a description of the force field used 
by the design simulation. Additionally, a link is provided to download the input scaffold structure 
and, in the case of interface design, the complex structure. If the user opts to upload the scaffold 
and receptor structures separately and dock them together, the complex structure will be available 
to download upon completion of docking. For monomer design, if the input scaffold structure is a 
Cα trace, a full-atomic model will be generated using REMO [15]. The full-atomic model is then 
uploaded to the server, replacing the initial Cα trace model. The scaffold, receptor and complex 
structures are visualized using the interactive JSmol applet. 
  



 
 
Figure S3: Summary of the Top Homologs Used for Profile Construction. To generate the 
evolutionary profiles, structural and interface homologs are identified from the PDB and protein 
interaction libraries. Although all homologous proteins with TM-scores higher than the specified 
cutoff are used for monomer profile construction, only the top ten structural homologs, which are 
sorted by TM-score to the scaffold structure, are displayed in this section. The information 
displayed for each homolog includes: (i) the homolog PDB ID and the link to download the 
structure, (ii) the TM-score and sequence identity to the scaffold, and (iii) the alignment between 
the scaffold and the homolog. Moreover, links are provided to download the full multiple sequence 
alignment and the evolutionary profile used to guide the design simulation. 
  



 

 
 
Figure S4: Clustering Results. During the Monte Carlo simulation, many designed sequences are 
generated. After the simulaion is completed, the generated sequences are clustered using 
SPICKER [16] based on the distance scaled by their BLOSUM62 sequence similarity. For each 
target, EvoDesign outputs ten designed sequences, which are selected after clustering. The number 
of sequences selected from each cluster depends on the cluster size. For example, if 70% of the 
sequence decoys are contained in the first cluster, 7 sequences would be selected from the first 
cluster. For each cluster, the sequence in the cluster center is selected first, followed by selection 
of the non-redundant and lowest-energy sequences. Here, the non-redundant sequence identity 
cutoff is equal to 70%. The first column of the table lists the cluster number. The relative size of 
each cluster and the number of sequences selected from each cluster are displayed in columns 2 
and 3, respectively. The last column contains links to download text files containing each sequence 
in the cluster. The files contain the sequences and the EvoDesign calculated energy of each 
sequence. 
 
  



 

 
 
Figure S5 Results Table. A summary of the results of the local structural analysis is provided for 
the top ten designed sequences in tabular form. Here, the secondary structure, solvent accessibility 
and torsion angles of the designed and scaffold sequences are predicted using three neural-network 
programs, namely, PSSpred [17], Solve [18], and Anglor [19]. The normalized relative errors 
(NRE) are provided for each of the features (Columns 3-6) to give an approximate assessment of 
the local structural quality of the designed sequences. The NRE is an error measure for the local 
structural feature predictors for each designed sequence relative to the scaffold sequence: 𝑁𝑅𝐸 =
(𝐸𝐷𝑆 − 𝐸𝑇𝑆)/𝐸𝑇𝑆. 𝐸𝐷𝑆 (EDS stands for ‘error of designed sequence’) is the error of prediction 
for the designed sequence relative to that assigned by the DSSP program [5] on the scaffold 
structure, and 𝐸𝑇𝑆 (ETS stands for ‘error of target sequence’) is the error of the prediction for the 
target scaffold sequence. Thus, a small (or negative) NRE value indicates that the designed 
sequence has a relatively small (or even smaller) prediction error than the scaffold sequence, while 
a large NRE usually signals a bad design due to the large prediction error relative to the scaffold 
sequence. Links are provided at the bottom of the table to download the secondary structure, 
solvent accessibility, and backbone torsional angle prediction data for the designed sequences. The 
first column of the table contains links so that users can download each of the designed sequences. 
In addition, the binding energy change of the designed proteins compared to the native scaffold 
are calculated by EvoEF and BindProfX and are listed in the results table. This should help provide 
information on how the altered interfaces affect the binding affinities compared to the wild type 
proteins. All of the information can be downloaded as a compressed file under the link to 
‘Data.zip’. 
  



 

 
 
Figure S6: I-TASSER Modeling of the Top Ten Designed Sequences. If the user selects the 
option, the structures of the top ten designed sequences are modeled with the I-TASSER pipeline. 
For each model, a confidence score (C-score) of the folding simulation is calculated by 𝐶-𝑠𝑐𝑜𝑟𝑒 =
ln é6/6¥¢¥
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^tA 	í, where 𝑀/𝑀Y5Y  is the fraction of the structure decoys generated by I-

TASSER in the largest structure cluster, and ⟨𝑅𝑀𝑆𝐷⟩ is the average RMSD of the decoys to the 
cluster center. This term corresponds to the degree of convergence of the folding simulations. 
𝑍(𝑖)/𝑍r(𝑖) is the normalized significance score of the templates by the 𝑖Y[ threading program, 
where there are a total of N threading program used by I-TASSER for template identification. The 
C-score is normally in the range of [-5, 2], and a C-score >−1.5 usually indicates that the I-
TASSER model has a correct fold with a TM-score >0.5 [20]. Since not all designs can be folded 
by I-TASSER with a high confidence, the C-score can be used as an approximate assessment of 
the foldability of the designed sequences. In a large-scale experiment that examined the folding of 
designed sequences [4], it was shown that there is a strong correlation between the C-score of I-
TASSER simulations and the folding rate of designed proteins, where 80% (or 100%) of designed 
sequences are experimentally foldable for sequences with an I-TASSER C-score >0 (or >0.8). In 
this figure, the TM-scores and RMSDs are between the I-TASSER model and the starting scaffold. 
Users are able to download the I-TASSER models from the provided links. 
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