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Abstract

EvoDesign (https://zhanglab.ccmb.med.umich.edu/EvoDesign) is an online server system for protein
design. The method uses evolutionary profiles to guide the sequence search simulation and demonstrated
significant advantages over physics-based approaches in terms of more accurately designing proteins that
adopt desired target folds. Despite the success, the previous EvoDesign program focused only on monomer
protein design, which limited its ability and usefulness in terms of designing functional proteins. In this work,
we propose a new EvoDesign server, which extends the principles of evolution-based design to design
protein–protein interactions. Starting from a two-chain complex structure, structurally similar interfaces are
identified from known protein–protein interaction databases. An interface evolutionary profile is then
constructed from a multiple sequence alignment of the interface analogies, which is combined with a newly
developed, atomic-level physical energy function to guide the replica-exchange Monte Carlo simulation
search. The purpose of the server is to redesign the specified complex chain to increase its stability and
binding affinity for the other chain in the complex. With the improved scope and accuracy of the methodology,
the new EvoDesign pipeline should become a useful online tool for functional protein design and drug
discovery studies.

© 2019 Elsevier Ltd. All rights reserved.
Introduction

Proteins are complex molecular machines that
ubiquitously perform the cellular tasks necessary to
sustain life. Nevertheless, despite the impressive role
of natural proteins, only a tiny portion of the total
possible amino acid sequences appear in nature.
Computational protein design can be used to more
thoroughly explore the sequence space in order to
design artificial proteins with increased stability and/or
enhanced functionality compared to their natural
counterparts. Since many protein functions are
mediated by protein–protein interactions (PPIs) [1,2],
an effective strategy to enhance the functions of
proteins is to redesign their interfaces to increase or
alter the binding affinity and binding mode of PPIs [3].
This approach has been successfully applied to the
redesign of various protein systems [4–8] and holds
tremendous potential for the development of novel
therapeutics, enzymes, and other useful proteins.
r Ltd. All rights reserved.
Most current protein designmethods utilize physical
energy functions to search for low freeenergy states in
the sequence space. This approach is, however, often
limited by the inability of physical energy functions to
accurately recapitulate inter-atomic interactions or
recognize correct folds, which has also been mani-
fested in various protein folding and structure predic-
tion studies [9,10]. To partially address the
inaccuracies of computational protein design using
physics-based energy functions, we previously de-
veloped an evolution-based method, EvoDesign [11].
EvoDesign utilizes evolutionary profiles collected from
analogous protein folds to help guide the sequence
search simulation. Large-scale design and folding
experiments demonstrated that the combination of
evolutionary profiles with physical energy terms,
where the latter is included mainly to accommodate
the local atomic-level packing interactions, is more
effective than purely physics-based methods in
terms of designing proteins that adopt a desired
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2468 EvoDesign for Protein–Protein Interaction Design
target fold [12]. Despite the success, the previous
version of EvoDesign focused solely on the design
of monomeric proteins and could not be used to
design PPIs, which considerably limited its useful-
ness in terms of functional protein design.
In this work, we extend the use of evolutionary-profile

guided design to the design of PPIs. For this purpose, a
new strategy has been developed to extract PPI
profiles from structurally analogous protein interfaces,
which are then used to guide the interface design
search [13]. Furthermore, the former EvoDesign
pipeline utilized an external program, FoldX [14], to
calculate the physical energy of a protein. Although it
worked reasonably well, the procedure of calling an
external program was prohibitively time-consuming.
We developed a new physical energy function, EvoEF
(EvoDesign Energy Function), which shows an im-
proved ability to recognize inter-molecular binding
interactions, while significantly speeding up the design
process. Overall, the new EvoDesign server contains
two design protocols: monomer fold design and dimer
interface design, each with its own online interface.
It should be noted that the focus of the new dimer
interface design protocol is on the redesign of one
specific chain in the complex structure, termed the
scaffold, so as to increase its stability and binding
affinity toward the other chain in the complex, termed
the binding partner. The sequence of the binding
partner is unchanged during the simulation, although
its side-chain conformations are allowed to move in
order to accommodate the designed interface
residues. This interface design protocol can be
used for various applications that allow for a variable
scaffold protein but call for a fixed binding partner.
One such application is the design of protein
therapeutics, where the therapeutic can be rede-
signed to increase its affinity for a fixed target in the
body. The EvoDesign pipeline is fully automated and
freely available at https://zhanglab.ccmb.med.
umich.edu/EvoDesign. In addition to the online
server, the source code for our newly developed
physical energy function, EvoEF, can be down-
loaded at https://zhanglab.ccmb.med.umich.edu/
EvoDesign/EvoEF.tar.gz.
nterface potential. However, a full explanation of
rmation (SI).
Methods and Results
Overview of the EvoDesign protocol

In order to incorporate functional protein design into EvoDesign, the evolution-based design method has
been extended to the design of PPIs, where an overview of the new EvoDesign pipeline is depicted in Fig. 1.
Starting from a two-chain complex structure of interest, its interface is structurally aligned to interfaces in the
non-redundant interface library [13] using iAlign [15]. A profile is then constructed from the interface multiple
sequence alignment (iMSA), based on the structures that have a high similarity score [15] to the query
complex interface. Finally, the evolution-based binding affinity change for each mutation at the interface is
determined by the logarithm of the relative probability of each mutant amino acid compared to the wild-type
amino acid in the interface profile [13,16]. This evolutionary energy term is combined with the physical energy
score calculated by EvoEF to determine the total binding energy. Complementing the interface profile, a
monomer structural profile is constructed from the multiple sequence alignment of monomer proteins that
have a similar fold to the scaffold chain as identified by TM-align [17] from the PDB library. Overall, the
information from both the monomer and interface profiles, as well as the physical energy function, is used as
the composite energy function to guide the replica-exchange Monte Carlo (REMC) simulation in order to
search for low free energy sequences.
Following theREMCsimulation, the generated sequence decoys are clustered bySPICKER [18] based on the

distance matrix defined by their BLOSUM62 sequence similarity. The final designs are selected from the lowest
free energy sequences in the largest clusters. Here, it is important to note that EvoDesign provides an option for
users to specify which chain in the complex is the scaffold and which chain is its binding partner. As stated
previously, EvoDesign only focuses on the redesign of the scaffold, leaving the sequence of its binding partner
unchanged, although the side-chain rotamer conformations of both chains are repacked during the design
simulation.

Evolutionary profile-based potentials

The evolutionary energy is composed of two terms: EevoMonomer and EevoInterface. The first term, EevoMonomer,
is used to capture the information from the multiple sequence alignment (MSA) generated by TM-align based
on the scaffold structure. The derivation of EevoMonomer was discussed previously [12]. For the web server
description, we will focus on the new evolutionary i
EevoMonomer is provided in Text S1 in the Supporting Info
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Fig. 1. Flowchart of the EvoDesign pipeline for PPI design. Starting from a given protein complex, similar monomer and
interface structures are identified from monomer and dimer structure libraries for the scaffold and protein complex,
respectively. Alignments of the structural analogies are used to create evolutionary profiles. These profiles are used as
energy terms in conjunction with a physical energy function, EvoEF, to guide the REMC simulation. After clustering the
sequence decoys generated during the simulation, the final designs are selected from the lowest free energy sequences in
the largest clusters.
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The second term, EevoInterface, captures the information from the iMSA collected by the iAlign search:

EevoInterface SDes;SScaffð Þ ¼ −
XL
i¼1

ln
P aaDes;i ; i
� �

P aaScaff;i ; i
� �

¼ −
XL
i¼1

ln
Nobs aaDes;i ; i

� �þ Npseudo aaDes;i ; i
� �

Nobs aaScaff;i ; i
� �þ Npseudo aaScaff;i ; i

� � ð1Þ

where P(aaDes, i, i) and P(aaScaff, i, i) are the probabilities that the designed and scaffold amino acids,
respectively, appear at position i in the interface. These probabilities are determined by the number of times that
either thedesigned,Nobs(aaDes, i, i), or thewild-typescaffold,Nobs(aaScaff, i, i), aminoacidsappear at the i th position in
the iMSA. The corresponding position-specific pseudocounts, Npseudo(aaDes, Scaff, i), are used to help compensate
for the small size of the interface library. The pseudocounts take into consideration gaps in the iMSA as well as
amino acids that are related to the wild-type/mutant residues in the interface alignment. A full description of the
pseudocounts is contained in Text S2.

EvoEF energy terms

The energy function of EvoEF is designed to describe the atomic interactions in proteins and contains five terms:

EEvoEF ¼
X
i ; j

Evdw i ; jð Þ þ Eelec i ; jð Þ þ EHB i ; jð Þ þ Esolv i ; jð Þ½ �−E ref ð2Þ

The first term, Evdw(i, j), is the van der Waals energy, which is modified from the Lennard–Jones 12–6
potential [19,20]:

Evdw ijð Þ ¼

min 5:0εijεij
σ ij

d ij

� �12

−2
σ ij

d ij

� �6
" #( )

; if d ijb0:8909σ ij

εij
σ ij

d ij

� �12

−2
σ ij

d ij

� �6
" #

; if 0:8909σ ij ≤dijb5:0

A � d3
ij þ B � d2

ij þ C � d ij þ D; if 5:0≤dijb6:0
0; if d ij ≥6:0

8>>>>>>>><
>>>>>>>>:

ð3Þ

where

A ¼ −0:4εij
σ ij

5:0

� �12
−1:6εij

σ ij

5:0

� �6

B ¼ 7:8εij
σ ij

5:0

� �12
þ 25:2εij

σ ij

5:0

� �6

C ¼ −50:4εij
σ ij

5:0

� �12
þ 129:6εij

σ ij

5:0

� �6

D ¼ 108εij
σ ij

5:0

� �12
þ 216εij

σ ij

5:0

� �6

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

Here, dij is the distance between the two atoms i and j, σij = σi + σj is the sum of their van der Waals atomic
radii and εij is the combined well-depth parameter for atoms i and j, which are all taken from the CHARMM19
force field [21]. The attractive and repulsive components of the van der Waals potential are split at dij =
0.8909σij. To increase the computational efficiency of EvoEF, we set a maximum distance cutoff of 6.0 Å and
use a cubic function to make continuous transition of the Lennard–Jones energy from its value at 5.0 Å to zero
at the cutoff distance. For the repulsive component, the maximum energy cutoff is set to 5.0εij; this helps
alleviate possible clashes, while not overly penalizing them due to the discrete rotameric conformations used
in protein design. An example of the overall shape of the van der Waals energy between an amide N and a
carbonyl C is shown in Fig. S1.
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The second term in Eq. (2), Eelec(i, j), is used to determine the electrostatic interactions between partially
charged atoms:

Eelec i jð Þ ¼

C0qiq j

ε 0:8σ ij
� � 1

0:8σ ij
; if d ijb0:8σ ij

C0qiq j

ε dij
� � 1

dij
; if 0:8σ i j ≤di jb6:0

0; if d i j ≥6:0

8>>>>><
>>>>>:

ð5Þ

where qi and qj are the partial atomic charges, which are calculated using the PARSE method [22].
Furthermore, C0 = 332 Å kcal mol−1e−2, where e is the elementary charge, and ε(dij) is the distance-
dependent dielectric constant, which takes the form, ε(dij) = 40dij. When computing the electrostatics term and
dielectric constant, if the distance between two atoms, dij, is less than 0.8 σij, dij is set to 0.8 σij, to restrict the
electrostatics energy to a reasonable, finite value. Again, for the sake of computational efficiency, a maximum
distance cutoff is set to 6.0 Å, beyond which the value of the electrostatics term is zero.
The third term in Eq. (2), EHB(i, j), is used to calculate the hydrogen-bonding interactions. EHB(i, j) is a linear

combination of three energy terms that depend on the hydrogen-acceptor distance (dij
HA), the angle between the

donor, hydrogen and acceptor atoms (θij
DHA), and the angle between the hydrogen, acceptor and base atoms

(φij
HAB):

EHB i ; jð Þ ¼ wdHAE dHA
ij

� �
þ wθDHAE θDHA

ij

� �
þ wφHAB

E φHAB
ij

� �
ð6Þ

where

E dHA
ij

� �
¼

− cos
π
2

dHA
ij −1:9

� �
= 1:9−dminð Þ

h i
; if dmin≤dHA≤1:9

−0:5 cos π dHA
ij −1:9

� �
= dmax−1:9ð Þ

h i
−0:5; else if 1:9 ÅbdHA≤dmax

0; otherwise

8>><
>>:

E θDHA
ij

� �
¼ − cos4 θDHA

ij

� �

E φHAB
ij

� �
¼

− cos4 φHAB
ij −150

� �
; for HBbb and for sp2 in HBsb or HBss

− cos4 φHAB
ij −135

� �
; for sp3 in HBsb or HBss

8<
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

The optimal distance between the hydrogen and its acceptor is set to 1.9 Å, which is taken from Kortemme
et al. [23]. In addition, dmin = 1.4 Å and dmax = 3.0 Å are the lower and upper bounds on the distance between
the hydrogen-acceptor pair. The optimal φij

HAB value is set to either 150° or 135°, depending on the acceptor
hybridization (sp2 or sp3) and the locations of the donor and acceptor atoms (from backbone–backbone,
HBbb; sidechain–backbone, HBsb; or sidechain–sidechain, HBss).
The fourth term in Eq. (2), Esolv(i, j), describes the desolvation energy following the model introduced by

Lazaridis and Karplus [24]:

Esolv i ; jð Þ ¼ −V j
ΔGfree

i

2π
3
2λi d

2
ij

exp −
d ij−σ i

λi

� �2
" #

−V i
ΔGfree

j

2π
3
2λ j d

2
ij

exp −
dij−σ j

λ j

� �2
" #

ð8Þ

where Vi, j, ΔGi, j
free, and λi, j are the atom volumes, reference solvation energies, and correlation lengths,

respectively, which are all taken from the paper by Lazardis and Karplus [24]. The desolvation energy for
both polar and nonpolar atoms is calculated using this method; however, the contribution from polar
atoms is weighted differently from non-polar atoms. Specifically, EsolvPolar(i, j) = wsolvPolarEsolv(i, j) and
EsolvNonpolar(i, j) = wsolvNonpolarEsolv(i, j).
The last term in Eq. (2), Eref, is the reference energy of a protein sequence and is used to approximate the

energy of the unfolded state ensemble:

E ref ¼
XL
i¼1

Er aaið Þ ð9Þ

where L is the length of the protein sequence, and Er(aai) is an amino acid specific parameter to be optimized. The
referenceenergy is used to choosesequences that havea largeenergygapbetween the foldedandunfoldedstates.
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EvoEF parameter optimization and benchmark tests

EvoEF contains a total of 36 weights and 20 reference energies (see Tables S1 and S2 for a detailed list).
These parameters are decided by optimizing the energy function's ability to predict protein stability and
binding affinity changes upon mutation. Since EvoEF's energy calculation is split into three parts- the non-
bonded atomic interactions within a residue (EintraResidue), those between different residues within the same
chain (EinterResidueSameChain), and those between different residues from different chains (EinterResidueDiffChain)
[see Eqs. (S6) in SI]- the parameterization of EvoFF was performed in two steps. First, the reference energies
and weighting factors for EintraResidue and EinterResidueSameChain were optimized by minimizing the difference
between the experimental and predicted values for mutation-induced protein monomer stability change
(ΔΔGstability

WT→mut). The experimental data consisted of 3989 non-redundant mutation samples from 210
monomeric proteins taken from the FoldX and STRUM data sets [25,26]. Second, the 14 weights for
EinterResidueDiffChain were determined using the mutation-induced protein–protein binding affinity change data
(ΔΔGbinding

WT→mut), which contained 2204 non-redundant mutant samples from 177 dimeric complexes collected
from the latest version of the SKEMPI database [27]. Each data set was randomly split in half into training and
test sets. A detailed description of the data construction and EvoEF optimization procedure is provided in Text
S3, and the optimized parameters are listed in Tables S1 and S2. We note that the contributions from some
terms (such as the electrostatics) are negligible following the parameter optimization, a phenomenon that was
also observed by other studies in the ΔΔG-based energy parameterizations [28].
The performance of EvoEF was evaluated using the above test data sets by calculating the Pearson

correlation coefficients (PCCs) and root mean square errors (RMSEs) between the experimental and
predicted ΔΔGstability

WT→mut and ΔΔGbinding
WT→mut, in control with FoldX version 4. The results showed that the PCC

between ΔΔGstability, pred
WT→mut and ΔΔGstability, exp

WT→mut for EvoEF was 0.472 with an RMSE of 1.751 kcal/mol (Fig. 2a).
As a comparison, FoldX obtained a PCC of 0.465 with an RMSE of 2.010 kcal/mol for the same data set
(Fig. 2b). Furthermore, the PCC between ΔΔGbinding, pred

WT→mut and ΔΔGbinding, exp
WT→mut for EvoEF was 0.514 with an

RMSE of 2.109 kcal/mol (Fig. 2c), while the PCC for FoldX was 0.490 with an RMSE of 2.248 kcal/mol (Fig. 2d).
The data showed that EvoEF slightly outperformed FoldX for both ΔΔGstability

WT→mut and ΔΔGbinding
WT→mut prediction.
Fig. 2. Correlation between predicted and experimental values for mutation-induced folding stability and binding affinity
changes. (a, b) Folding stability changes upon mutation, ΔΔGstability

WT→mut, for monomer proteins predicted by EvoEF (a) and
FoldX (b) versus the experimental data for 1994 test proteins. (c, d) Binding affinity changes upon mutation in the interface
of protein–protein complexes, ΔΔGbinding

WT→mut, predicted by EvoEF (c) and FoldX (d) versus the experimental data for 1102
test proteins.
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We also tested EvoEF's ability to recognize the native structure from non-native decoys using the 3DRobot
Decoy Set [29], which contains decoys from 200 non-homologous proteins. Among the 200 decoy sets,
EvoEF was able to properly rank the native as the lowest energy in all the sets, while FoldX did so in 198
cases. In the second more stringent test, we calculated the energy gap between the near-native decoys (top
10% of decoys with the lowest RMSDs) and the remainder of the decoys. The average Z score (i.e., the
energy gap normalized by the standard deviation) for EvoEF and FoldX was 1.959 and 1.844, respectively. If
we define a successful case as that with a Z-score N 1, EvoEF successfully recognized the near-native
structural decoys in 198 out of the 200 cases, while FoldX did so in 193 of the cases. These data suggest that
EvoEF has a relatively better ability to distinguish native-like monomer structures from other structural
decoys (see Text S4 for a detailed description).
Furthermore, based on our tests on identical computational cores, EvoEF is about three times

faster than FoldX at computing stability energy and approximately five times faster at computing protein–
protein binding energy, indicating that using EvoEF can significantly increase the speed of our design
simulations.

REMC simulation for sequence space search

Starting from a random sequence, REMC is used to search the sequence space, where random
mutations are made on a set of randomly selected residues at each step, which are accepted or rejected
based on the Metropolis criterion [30]. The composite energy function used to guide the REMC simulation is
as follows:

EMC ¼ −EevoMonomer þ wevoInterfaceEevoInterface þ wEvoEFEEvoEF ð10Þ

whereEevoMonomer andEevoInterface are the evolutionary energies from themonomer and interface profiles and
EEvoEF is the physical energy calculated by EvoEF. For interface design, the weight parameters wevoInterface
and wEvoEF are set to 3.0 and 2.0, respectively. These weights were selected in order to balance the average
contribution from each energy term based on design simulations for a training set composed of 625
monomers and 177 protein–protein complexes.
Within REMC, four parameters need to be carefully considered. First, the highest temperature (Tmax)

should be high enough to enable the simulation to overcome energy barriers, while the lowest temperature
(Tmin) should be low enough to ensure the simulation sufficiently scans the low-energy states. Second,
the number of replicas (Nrep) should be large enough to ensure sufficient chance for the adjacent replicas
to communicate with each other. Third, the number of local movements (Nsweep) before the global swaps
should be selected to make the local Metropolis search achieve satisfactory equilibrium. After successive
rounds of optimization, the final parameters were selected as: Tmax = 15, Tmin = 0.5, Nrep = 40, and
Nsweep = 100.

Server input

The only input to the EvoDesign server is the monomer (for monomer design) or protein–protein
complex (for interface design) structures of interest in PDB format. For monomer design, the input
structure may be full-atomic or a Cα trace, while for interface design, it must be full atomic given the
sensitivity of the design to the shape of the binding pocket. In addition, for interface design, the user is
able to upload the scaffold structure and its binding partner as a preformed complex structure or as two
separate chains. If the two chains are uploaded separately, the user is given an option to dock the two
chains together using ZDOCK [31], a state-of-the-art fast Fourier transform-based protein–protein
docking software.
Several advanced options are provided to further tailor the EvoDesign simulation to suit users' needs. This is

achieved by allowing users (i) to select the structural similarity cutoff (TM-score) used during profile
construction, (ii) to select the type of energy function used during the design simulation (either evolution-based
only design or combined physics- and evolution-based design), (iii) to exclude residue types at specific
locations, (iv) to prevent the mutation of residues at specific locations (such as interfaces), and (v) to model the
structures of the final designed sequences using I-TASSER [32].
It should be noted that the default EvoDesign setting for PPI design is to redesign the entire sequence of the

scaffold chain. The rationale behind designing non-interface residues is that introducing mutations in the
interface may have destabilizing effects on the whole protein or lead to suboptimal packing [8,33,34].
However, for some large complexes with specific folding architectures, such as antibody–antigen complexes,
it might be beneficial to focus the design only on the interface regions. Thus, for interface design, users are



2474 EvoDesign for Protein–Protein Interaction Design
given an additional option to either redesign the entire scaffold protein or to redesign only its interface
residues, which are defined as residues within 5 Å of the opposite chain.

Server output

Immediately following submission of a design job, an output page with a private URL for the job is created,
which users are able to bookmark for future visit. When the EvoDesign simulation finishes, users will be
notified by e-mail with a link to the results page. The results in the output page contain: (i) a summary of the
input to the server (see Fig. S2 for an illustrative example), (ii) the top structural homologs used for monomer
and interface profile construction as well as links to download the full multiple sequence alignment and
evolutionary profile (Fig. S3), (iii) the clustering results of sequence decoys generated during the REMC
simulation (Fig. S4), (iv) a summary of the top 10 designed sequences and the local feature assessment
parameters (Fig. S5), (v) a detailed overview of the top 10 designed sequences including the sequence
alignments between the scaffold and designs, and (vi) the I-TASSER folding results for the top 10 designs
(Fig. S6).
Discussion

The EvoDesign server is a fully automated, online
tool for protein design and has the ability to design
new proteins either as free monomers (monomer
design) or as members of protein–protein complexes
(interface design). Starting from the structural coordi-
nates of a monomeric protein or complex, EvoDesign
first collects homologous folds and protein interfaces
from the PDB, from which monomeric and complex
profiles are constructed separately. Next, the evolu-
tionary profiles are combined with a newly developed
physical energy function, EvoEF, to guide the REMC
simulation in order to design new sequences. Finally,
the designed sequences are clustered, and the final
designs are chosen from the lowest free energy
sequences in the largest clusters.
It is important to note that the core algorithm of

EvoDesign has been preserved from previous
iterations of the program. This algorithm was
validated in a large-scale, in silico redesign exper-
iment of N300 soluble protein folds [12]. Moreover,
from this experiment, five designed domains with
variable fold types and sequence lengths were
experimentally tested through circular dichroism
and NMR spectroscopy. All five proteins (including
the heterogeneous nuclear ribonucleoprotein K
domain, thioredoxin domain, light oxygen voltage
domain, translation initiation factor 1 domain, and the
CISK-PX domain) were soluble and possessed
secondary structure as determined by circular
dichroism, and three of the designed domains had
stable folds as shown by 1D NMR data. The follow-
up x-ray crystallography study [35] showed that the
crystal structure of the EvoDesign designed CISK-
PX domain was very similar (1.32 Å) to the target
model generated by I-TASSER structure prediction.
In this work, we have extended the EvoDesign

pipeline to enable the design of PPIs by incorporat-
ing an evolutionary interface potential and a new
physical energy function into the program. A
previous benchmark study of our evolutionary
interface potential demonstrated that its predicted
ΔΔGbinding

WT→mut values, binding affinity change of protein
complexes upon amino acid mutation, showed
superior correlation with experimental values [13];
the correlation was significantly higher than that
produced by leading physics- and statistical-based
methods. Most recently, we applied the new EvoDe-
sign program to the redesign of the BIR3 domain of
the X-linked inhibitor of apoptosis protein (XIAP) [8],
whose primary function is to suppress cell death by
inhibiting caspase-9 activity. However, the suppres-
sion of cell death by wild-type XIAP can be
eliminated by the binding of Smac peptides. Multiple
biophysical experiments such as NMR chemical shift
perturbation and isothermal calorimetry binding
assays demonstrated that the redesigned XIAP
domains could bind the Smac peptide with dissoci-
ation constants in the low nanomolar range, but did
not inhibit the caspase-9 proteolytic activity in vitro.
Detailed mutagenesis analyses demonstrated that
the major driving force behind the successful
redesign of the XIAP–Smac interaction was the
interplay of the evolutionary profiles and physical
potential [8].
The physical energy function utilized by the

previous version of EvoDesign was FoldX. FoldX
was originally developed and optimized to predict
protein stability change upon mutation and has been
widely used in the protein science community. Our
benchmark tests show that the newly developed
EvoEF generates more accurate predictions than
FoldX for both stability and binding affinity change
upon mutation, where the latter is critical to PPI
design/engineering. In addition to the improved
model accuracy, EvoEF is significantly faster than
FoldX when it comes to energy calculation. This is
particularly important in extensive protein design
simulations like EvoDesign, where the physics-
based energy computation is one of the most time-
consuming parts of the pipeline. FoldX's inefficient
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energy computation is partly due to the fact that,
currently, only executables are provided for the
software and the computational speed cannot be
fully optimized by users. Therefore, an effective and
efficient physical energy function should be very
helpful to the protein science community. The EvoEF
source code is made freely available at https://
zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEF.
tar.gz, where users can optimize the code and
parameters according to their own needs. Text S5 in
the SI provides a detailed description of the
commands and functions implemented in EvoEF.
Despite their effectiveness and efficiency, the

evolutionary components of the EvoDesign potential
can be partly limited by the availability of structural
homologs in the PDB; in particular, the number of
protein interface homologs identified by iAlign may
be low. In a previous study, we found that the
average number of interface homologs identified for
a set of test complexes was approximately five [13].
To address this issue, we recently tested a new
method, SSIPe, to constructs interface profiles by
combining the structural iMSA with sequence homo-
logs from sequence-based PPI databases. Based
on the preliminary data, the method shows promise
to significantly increase binding affinity prediction
accuracy and we plan to integrate it into EvoDesign
after further optimization.
Finally, as one of the essential difficulties in

computer-based protein design is the expensive
cost of experimental validation, the EvoDesign
server aims to provide various transparent interme-
diate data to allow for a detailed annotation and
analysis of the confidence of the designed se-
quences. With the continuous effort on the develop-
ment and improvement of the scope and accuracy of
the methodology, we believe the new EvoDesign
pipeline should become a useful tool to the
community, especially for scientists who have
known protein structures but want to design new
sequences with enhanced foldability and biological
functionality.
Acknowledgment

The work was supported in part by the National
Institute of General Medical Sciences (GM083107
and GM116960), the National Institute of Allergy and
Infectious Diseases (AI134678), and the National
Science Foundation (DBI1564756).
Appendix A. Supplementary data

Supplementary data to this article can be found
online at https://doi.org/10.1016/j.jmb.2019.02.028.
Received 3 November 2018;
Received in revised form 10 February 2019;

Accepted 26 February 2019
Available online 7 March 2019

Keywords:
protein design;

protein–protein interaction;
interface profile;

physical force field;
protein structure prediction

†R.P. and X.H. contributed equally to the resource.
Abbreviations used:

PPIs, protein–protein interactions; EvoEF, EvoDesign
Energy Function; iMSA, interface multiple sequence

alignment; REMC, replica-exchange Monte Carlo; PCCs,
Pearson correlation coefficients; RMSEs, root mean

square errors.
References

[1] H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai,
Lethality and centrality in protein networks, Nature 411
(2001) 41–42.

[2] A. Szilagyi, V. Grimm, A.K. Arakaki, J. Skolnick, Prediction of
physical protein–protein interactions, Phys. Biol. 2 (2005)
S1–S16.

[3] J. Karanicolas, B. Kuhlman, Computational design of affinity
and specificity at protein–protein interfaces, Curr. Opin.
Struct. Biol. 19 (2009) 458–463.

[4] A. Chevalier, D.A. Silva, G.J. Rocklin, D.R. Hicks, R. Vergara,
P. Murapa, et al., Massively parallel de novo protein design
for targeted therapeutics, Nature 550 (2017) 74–+.

[5] G. Grigoryan, A.W. Reinke, A.E. Keating, Design of protein-
interaction specificity gives selective bZIP-binding peptides,
Nature 458 (2009) 859–864.

[6] S.J. Fleishman, T.A. Whitehead, D.C. Ekiert, C. Dreyfus, J.E.
Corn, E.M. Strauch, et al., Computational design of proteins
targeting the conserved stem region of influenza hemagglu-
tinin, Science 332 (2011) 816–821.

[7] N.P. King, W. Sheffler, M.R. Sawaya, B.S. Vollmar, N.A.
Khattak, F. Gray, et al., J.P. Sumida, I. Andre, et al.,
Computational design of self-assembling protein nanomater-
ials with atomic level accuracy, Science 336 (2012)
1171–1174.

[8] D. Shultis, P. Mitra, X. Huang, J. Johnson, Z. Y, Changing the
apoptosis pathway through evolutionary protein design, J.
Mol. Biol. 431 (2019) 825–841.

[9] D. Baker, A. Sali, Protein structure prediction and structural
genomics, Science 294 (2001) 93–96.

[10] Y. Zhang, Progress and challenges in protein structure
prediction, Curr. Opin. Struct. Biol. 18 (2008) 342–348.

[11] P. Mitra, D. Shultis, Y. Zhang, EvoDesign: De novo protein
design based on structural and evolutionary profiles, Nucleic
Acids Res. 41 (2013) W273–W280.

[12] P. Mitra, D. Shultis, J.R. Brender, J. Czajka, D. Marsh, F.
Gray, et al., An evolution-based approach to De novo protein
design and case study onMycobacterium tuberculosis, PLoS
Comput. Biol. 9 (2013), e1003298.

https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEF.tar.gz
https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEF.tar.gz
https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEF.tar.gz
https://doi.org/
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0005
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0005
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0005
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0010
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0010
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0010
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0015
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0015
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0015
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0020
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0020
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0020
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0020
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0025
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0025
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0025
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0030
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0030
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0030
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0030
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0035
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0035
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0035
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0035
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0035
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0040
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0040
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0040
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0045
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0045
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0050
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0050
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0055
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0055
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0055
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0060
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0060
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0060
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0060


2476 EvoDesign for Protein–Protein Interaction Design
[13] P. Xiong, C. Zhang, W. Zheng, Y. Zhang, BindProfX:
assessing mutation-induced binding affinity change by
protein Interface profiles with pseudo-counts, J. Mol. Biol.
429 (2017) 426–434.

[14] J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, L.
Serrano, The FoldX web server: an online force field, Nucleic
Acids Res. 33 (2005) W382–W388.

[15] M. Gao, J. Skolnick, iAlign: a method for the structural
comparison of protein–protein interfaces, Bioinformatics 26
(2010) 2259–2265.

[16] J.R. Brender, Y. Zhang, Predicting the effect of mutations on
protein–protein binding interactions through structure-based
Interface profiles, PLoS Comput. Biol. 11 (2015), e1004494

[17] Y. Zhang, J. Skolnick, TM-align: a protein structure alignment
algorithm based on the TM-score, Nucleic Acids Res. 33
(2005) 2302–2309.

[18] Y. Zhang, J. Skolnick, SPICKER: a clustering approach to
identify near-native protein folds, J. Comput. Chem. 25
(2004) 865–871.

[19] J.E. Jones, On the determination of molecular fields. I. From
the variation of the viscosity of a gas with temperature, Proc.
R. Soc. Lond. A 106 (1924) 441–462.

[20] J.E. Jones, On the determination of molecular fields. II. From
the equation of state of a gas, Proc. R. Soc. Lond. A 106
(1924) 463–477.

[21] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S.
Swaminathan, M. Karplus, CHARMM: a program for macro-
molecular energy, minimization, and dynamics calculations,
J. Comput. Chem. 4 (1983) 187–217.

[22] D. Sitkoff, K.A. Sharp, B. Honig, Accurate calculation of
hydration free energies using macroscopic solvent models, J.
Phys. Chem. 98 (1994) 1978–1988.

[23] T. Kortemme, A.V. Morozov, D. Baker, An orientation-
dependent hydrogen bonding potential improves prediction
of specificity and structure for proteins and protein–protein
complexes, J. Mol. Biol. 326 (2003) 1239–1259.

[24] T. Lazaridis, M. Karplus, Effective energy function for
proteins in solution, Proteins Struct. Funct. Bioinforma. 35
(1999) 133–152.
[25] R. Guerois, J.E. Nielsen, L. Serrano, Predicting changes in
the stability of proteins and protein complexes: a study of
more than 1000 mutations, J. Mol. Biol. 320 (2002) 369–387.

[26] L. Quan, Q. Lv, Y. Zhang, STRUM: structure-based
prediction of protein stability changes upon single-point
mutation, Bioinformatics 32 (2016) 2936–2946.

[27] J. Jankauskaite, B. Jimenez-Garcia, J. Dapkunas, J.
Fernandez-Recio, I.H. Moal, SKEMPI 2.0: an updated
benchmark of changes in protein–protein binding energy,
kinetics and thermodynamics upon mutation, Bioinformatics
35 (3) (2018) 462–469.

[28] T. Kortemme, D. Baker, A simple physical model for binding
energy hot spots in protein–protein complexes, Proc. Natl.
Acad. Sci. U. S. A. 99 (2002) 14116–14121.

[29] H.Y. Deng, Y. Jia, Y. Zhang, 3DRobot: automated generation
of diverse and well-packed protein structure decoys, Bioin-
formatics 32 (2016) 378–387.

[30] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21 (1953) 1087–1092.

[31] B.G. Pierce, K. Wiehe, H. Hwang, B.H. Kim, T. Vreven, Z.
Weng, ZDOCK server: interactive docking prediction of
protein–protein complexes and symmetric multimers, Bioin-
formatics 30 (2014) 1771–1773.

[32] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, Y. Zhang, The I-
TASSER Suite: protein structure and function prediction, Nat.
Methods 12 (2015) 7–8.

[33] E. Procko, G.Y. Berguig, B.W. Shen, Y. Song, S. Frayo, A.J.
Convertine, et al., A computationally designed inhibitor of an
Epstein–Barr viral Bcl-2 protein induces apoptosis in infected
cells, Cell 157 (2014) 1644–1656.

[34] P.L. Kastritis, J.P. Rodrigues, G.E. Folkers, R. Boelens, A.M.
Bonvin, Proteins feel more than they see: fine-tuning of
binding affinity by properties of the non-interacting surface, J.
Mol. Biol. 426 (2014) 2632–2652.

[35] D. Shultis, G. Dodge, Y. Zhang, Crystal structure of designed
PX domain from cytokine-independent survival kinase and
implications on evolution-based protein engineering, J.
Struct. Biol. 191 (2015) 197–206.

http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0065
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0065
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0065
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0065
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0070
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0070
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0070
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0075
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0075
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0075
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0080
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0080
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0080
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0085
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0085
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0085
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0090
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0090
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0090
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0095
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0095
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0095
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0100
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0100
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0100
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0105
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0105
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0105
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0105
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0110
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0110
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0110
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0115
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0115
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0115
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0115
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0120
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0120
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0120
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0125
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0125
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0125
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0130
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0130
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0130
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0135
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0135
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0135
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0135
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0135
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0140
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0140
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0140
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0145
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0145
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0145
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0150
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0150
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0150
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0155
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0155
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0155
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0155
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0160
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0160
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0160
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0165
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0165
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0165
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0165
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0170
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0170
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0170
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0170
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0175
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0175
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0175
http://refhub.elsevier.com/S0022-2836(19)30118-4/rf0175

	EvoDesign: Designing Protein–Protein Binding Interactions Using Evolutionary Interface Profiles in Conjunction with an Opti...
	Introduction
	Methods and Results
	Overview of the EvoDesign protocol
	Evolutionary profile-based potentials
	EvoEF energy terms
	EvoEF parameter optimization and benchmark tests
	REMC simulation for sequence space search
	Server input
	Server output

	Discussion
	Acknowledgment
	Appendix A. Supplementary data
	References


