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Abstract

Understanding how gene-level mutations affect the binding affinity of protein–protein interactions is a key
issue of protein engineering. Due to the complexity of the problem, using physical force field to predict the
mutation-induced binding free-energy change remains challenging. In this work, we present a renewed
approach to calculate the impact of gene mutations on the binding affinity through the structure-based profiling
of protein–protein interfaces, where the binding free-energy change (ΔΔG) is counted as the logarithm of
relative probability of mutant amino acids over wild-type ones in the interface alignment matrix; three
pseudo-counts are introduced to alleviate the limit of the current interface library. Compared with a previous
profile score that was based on the log-odds likelihood calculation, the correlation between predicted and
experimental ΔΔG of single-site mutations is increased in this approach from 0.33 to 0.68. The
structure-based profile score is found complementary to the physical potentials, where a linear combination
of the profile score with the FoldX potential could increase the ΔΔG correlation from 0.46 to 0.74. It is also
shown that the profile score is robust for counting the coupling effect of multiple individual mutations. For the
mutations involving more than two mutation sites where the correlation between FoldX and experimental data
vanishes, the profile-based calculation retains a strong correlation with the experimental measurements.

© 2016 Elsevier Ltd. All rights reserved.
Introduction

Protein–protein interaction plays an essential role in
many biological processes, ranging from immune
defense to cellular communication [1]. The ability to
rationally design proteinmutants with improved binding
affinity is important in developing protein inhibitor as
therapeutic agents. However, predicting the binding
affinity change upon amino acid mutations remains
a challenge for physical force field due to the lack of
accurate methods describing the interactions [2].
Another major obstacle for physics-based approach
is the need of building full-atomic model for the mutant
complex, where both backbone and side-chain confor-
mation can changedue to themutations in the interface
region. Since physical energy calculation is sensitive
to the subtle changes of atomistic structure models,
this greatly restricts its performance, especially when
multiple mutant sites are involved, where the complex
er Ltd. All rights reserved.
coupling effect from individual residues could further
complicate the problem [3].
A useful approach to alleviate this limitation is the

utilization of evolutionary interface structure profiles
built from the multiple sequence alignments of
analogous protein–protein interactions collected
from known protein–protein interface databases [4].
The assumption behind the idea is simple, that is,
amino acids with a higher degree of conservation in
the structural and evolutionary analogies tend to
have a higher binding affinity. Due to the fundamen-
tally different principles that they are built on, the
information from the structure profile is complemen-
tary to the physics-based energy terms. The profile
score has also an advantage compared with physics-
based energy terms in that the calculation is not
sensitive to the accuracy of the complex structures
of target proteins, which enables the utilization of
low-resolution models from threading and docking
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approaches [5,6] for mutation calculations. Mean-
while, the coupling of different mutation sites can
make it challenging for the physical potential to predict
the effect from multiple-point mutations, where the
correlation may still hold in the profiling score of
interfaces given the completeness of the statistics.
How to build a connection between the interface

profiles and the protein binding affinity change upon
mutations is, however, a question, especially given
the limit number of known interactions in the current
structure library [7,8]. One of themostly usedmethods
is the log-odd likelihood score [9] that is equivalent to
the averageof the substitution scales from theDayhoff
[10] or BLOSUM [11] matrix between target amino
acid and all amino acids at the corresponding position
in the multiple interface alignments; this approach
was taken in the former versionofBindProf [4]. Another
approach is to calculate the binding free-energy
change according to the statistical energy derived
from the Boltzmann distribution. Since the number of
collected sequences is often much lower than that
required for stable Boltzmann statistics, here it is
necessary to make corrections to the amino acid
probability in the interface multiple structural alignment
(iMSA) according to amino acid substitutionmatrix [12].
In this work, we tested both methods to predict the

binding affinity change in an experimental database
of mutant protein interactions, SKEMPI [13]. We
found that the statistical energy has a significantly
improved correlation with the experimental ΔΔG
than the log-odds–based profiling approach. It also
shows advantage compared to the state of the art
physical potentials [14] in both nsSNP and multiple-
point mutations. An online server and the standalone
open-source program of the approach, called Bind-
ProfX, are freely available at http://zhanglab.ccmb.
med.umich.edu/BindProfX/.
Results and Discussion

Experimental mutation datasets

Experimental protein–protein binding affinity data
were derived from the SKEMPI database [13], which
contains the experimentally measured binding affinity
change of protein complexes upon amino acid muta-
tions. To construct the structure profile, we collected a
non-redundant set of the interface mutations from
SKEPMPI, where the residues with the nearest atomic
distance b5 Å to the opposite chain are identified as
interface residues. Average ΔΔG value is used when
there are multiple entries for the same mutation. The
final non-redundant interface mutation set contains
entries for 114 protein complexes, where 1131 entries
are single-point mutations, 195 are double-points
mutations, and 76 are three or higher-order mutations.
A list of the non-redundant mutations is available at
http://zhanglab.ccmb.med.umich.edu/BindProfX/
download/.

Statistical protein binding energy from interface
analogy alignments

For a query protein–protein complex, its interface
is structurally aligned to the interfaces in the
non-redundant interface library (NIL) collected from
the PIFACE library [7] (see Methods). The interface
comparison is performed by the I-align program [15],
where all interfaces with a high interface similarity
score (IS score, see Methods) are used to construct
an iMSA matrix. The binding free-energy change
upon mutation is calculated by

ΔΔGevo ið Þ ¼ −λ ln
P AMut; ið Þ
P AWT ; ið Þ

¼ −λ ln
Nobs AMut; ið Þ þ Npesudo AMut; ið Þ
Nobs AWT; ið Þ þ Npseudo AWT; ið Þ

ð1Þ

where P(AMut, i) and P(AWT, i) are the possibility of
mutant and wild-type amino acids, respectively,
appearing at the ith position of iMSA. Nobs(Mut, i)
and Nobs(WT, i) are the number of the corresponding
amino acids observed in the iMSA matrix, where
Npseudo(A, i) is the corresponding pseudo-count
number introduced to offset the limit of statistics
that will be discussed in detail in next section.
In Fig. 1a, we listed the correlation coefficient of

the predicted and experimental binding free-energy
changes (ΔΔG) upon the single-point mutations in
SKEPMPI. The experiments were performed at
different IS score cutoffs (from 0.2 to 0.98). It was
shown that the profile score has an inverted
U-shaped curve versus the IS score cutoff. This is
understandable because the iMSA with a high IS
score cutoff may contain too few interface samples
that can reduce the efficiency of the statistical
counting, while a too low IS score cutoff should
introduce false-positive interfaces into the matrix.
The method achieves a reasonable score with
correlation coefficient above 0.5 for all cutoffs in
[0.45, 0.65]. The best correlation coefficient is
achieved at IS score cutoff = 0.55 which has a
ΔΔG correlation coefficient = 0.68.
We also listed in the figure the correlation coefficient

data when we use the Gribskov log-odds profile score
[9], that is, using the log-odds difference between
the wild-type and mutant amino acid to calculate the
free-energy changes, which has been adopted in the
first version of BindProf [4]. The data show a similar
inverted U-shaped curve versus different IS score
cutoffs, with a platform in [0.3, 0.8]. However, the best
performance, with a ΔΔG correlation coefficient of
0.33, is much lower than the pseudo-count-assisted
Boltzmann probability calculations. The result is
largely consistent with the results obtained by the
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Fig. 1. Correlation coefficient between the predicted and experimental ΔΔG using difference scoring functions and
parameters. (a) Profile score by BindProf and BindProfX at different IS score cutoffs. (b) Dependence of correlation
coefficient on the fix number pseudo-count, where β=γ=0. (c) Dependence of correlation coefficient on the gap
penalty pseudo-count, where a=25,γ=0. (d) Dependence of correlation coefficient on the evolutionary pseudo-count,
where a=25,β=15.
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BindProf program, although BindProf used a different
interface template structure library frommultiple-chain
threading approach that consists of ~55,000 protein–
protein complexes [16]. These data suggest that the
use of Boltzmann probability with pseudo-counts
could better associate the interface structural profiles
with the binding free-energy change calculations.
Improving binding free-energy calculation with
pseudo-counts

The accurate calculation of the mutation probabil-
ity requests for an infinite number of structural
analogies in the interface MSA. However, we could
only find on average five structurally similar inter-
faces to the target with an IS score cutoff of 0.55. To
construct an optimal binding free-energy model from
structurally derived sequence information, we take
the strategy of introducing pseudo-counts to Eq. (1)
to partly alleviate the limit of the current structure
library. The pseudo-counts consist of three parts,
that is, Npesudo=Nfix +Ngap+Nevo, where Nfix, Ngap
andNevo are the fix-number pseudo-count, gap penalty
count and evolutional pseudo-count, respectively.
Fix number pseudo-count

The fix-number pseudo-count is a constant pa-
rameter, that is, Nfix=α, added to the observation of
both mutant and wild-type frequency. To test how
this parameter affects the binding correlation results,
we change the fixed pseudo-count number from 1
to 50, with the resultant correlation curve shown
in Fig. 1b. When α increases from 1 to 15, the
correlation coefficient rapidly increases from 0.586
to 0.641, and then keeps almost unchanged
afterward. In our calculation, we take α=25. Given
the low number of interface analogies identified on
average (~5), the data suggest that Nfix should be
much larger than the number of observed amino
acids in the interface alignments.
Pseudo-count of gap penalty

The second part in pseudo-count is used to
decrease the absolute value of predicted ΔΔG for
the positions with gap in the alignment, where Ngap=
βngap is proportional to the number of gaps (ngap) at
each position of iMSA. This count is introduced
based on the observation that the prediction
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accuracy of mutants with gapped alignment is much
worse than mutants without gap; that is, the average
correlation coefficient of predicted and experimental
ΔΔG values is only 0.25 at the positions with gaps in
the alignment, where it increases to 0.65 at the
positions without gap. Physically, such dependence
may be attributed to the fact that the structure of
proteins at the poorly aligned positions has a higher
variation and the structure profiles derived at these
positions are therefore less reliable.
Although the introduction of pseudo-count could

not increase the accuracy of ΔΔG prediction of
mutants with gaps in alignment, it helps balance the
contribution of the unreliably alignment regions to
the total score calculation when combined with other
binding score. As it is shown in Fig. 1c, this pseudo-
count indeed slightly increases the overall correla-
tion coefficient between predicted and experimental
ΔΔG values, where an optimal parameter β=15 was
selected.
Evolutionary pseudo-count

The third part of pseudo-count is a sum of the
counts of the amino acids evolutionally related to the
observed amino acid in the iMSA, which is designed
to offset the missing of the amino acid variations due
to the limited number of interface analogies, i.e.

Nevo A; ið Þ ¼ γ
X20

a¼1

Nobs a; ið Þ
N tot

M a;Að Þ ð2Þ

where Nobs(a, i)/Ntot is the relative frequency of
amino acid a appearing at the ith position of iMSA.
M(a,A) is the interface probability transition matrix
(iPTM) derived from the PIFACE homologous
interface structures (see Methods and Table S1 in
Supplementary Materials).
It is of interest to compare interface-based iPTM

and the widely used BLOSUM-based PTM that was
derived from the homologous sequence blocks [11]
(Table S2). One of the most significant differences is
the frequency of substitution between the polar and
hydrophobic amino acids, where the frequency in
the iPTM is higher than that in the BLOSUM PTM.
For example, T(Glu, Leu) is 0.093 in the iPTM and
0.026 in the BLOSUMPTM, and T(Leu,Glu) is 0.042
in the iPTM and 0.022 in BLOSUM PTM. This
probably reflects the enhanced interactions between
the polar and non-polar residues in the interface
regions.
Fig. 1d shows the dependence of the ΔΔG

correlation on the evolutionary pseudo-counts,
where adding a small number of evolutional pseudo-
count could increase the correlation coefficient from
0.667 to 0.686 at γ=5. Although the overall enhance-
ment is relatively low, this pseudo-count is more
helpful if the number of structural neighbors is low. For
those targets with only one or two structurally similar
interfaces, for example, the correlation coefficient
increased from 0.207 to 0.323.
Result of cross-validations

The results in Fig. 1 were obtained using four
parameters (IS score cutoff, α, β, γ) trained on the
global samples, which may have a danger of
over-fitting. To examine this issue, we made a
protein-level cross validation on the SKEMPI dataset,
in which the mutation samples were randomly divided
into five groups according to the proteins that the
mutations are associated with, where sequence
identity between the proteins in any two groups is
lower than 30% (a list of proteins in the five groups is
displayed in Table S3). Next, we randomly select three
groups as the training set to optimize the parameters
and test the BindProfX potential on the rest two groups.
Out of the 10 test experiments, the average correlation
coefficient between the predicted and experimental
ΔΔG is 0.663 for the training set and 0.625 for the
testing set. The data show a slight dependence of
the correlation on the training process because the
correlation coefficient on the testing is slightly lower
than the training set. However, the difference is
statistically insignificantly, as the p value in Student's
t test is 0.29.
As a control, we also performed a mutation-level

cross-validation test based on random split of the
mutation sampleswithout applying the 30%sequence
identity cutoff. The average correlation coefficient
between the predicted and experimentalΔΔG is 0.662
for training and 0.657 for testing sets. As expected, the
difference between the training and test becomes
smaller in the mutation-level cross-validation com-
pared to the protein-level ones, probably due to the
effect of homologous correlation between test and
training samples, which is consistent with the observa-
tion made on the cross-validation of monomer-chain
mutations [17,18].
Overall, the magnitudes of the correlation coeffi-

cients in the cross-validations are largely compara-
ble to that of Fig. 1, suggesting the robustness of the
BindProfX performance. Although the global param-
eter training can slightly improve the correlation, it
does not count for the major contribution of the
BindProfX performance.
Combination of profile score with physics based
potentials

FoldX [14] is an empirical potential that combines
multiple physics-based energy terms and has been
widely used to calculate protein–protein binding
energy. In the recent study [4], it was shown that
FoldX outperforms all other physics-based potentials
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in generating the ΔΔG prediction with the highest
correlation with the experimental data. When using
this potential to predict ΔΔG, the energy terms and
parameters were optimized to reproduce experimen-
tal ΔΔG upon single mutation. One assumption
here is that the backbone structure will be kept
unchanged after single amino acid substitution, with
the mutant structure often built by optimizing the side
chain conformation. To calculate the FoldX score,
the crystal structures of experimental proteins are
downloaded from SKEMPI Web site (http://life.bsc.
es/pid/mutation_database/database.html), with
water and ligand molecules removed from the
structural files. RepairPDB function within FoldX is
used to perform a quick optimization in native
structures, and BuildModel function is then used to
generate the structures of mutant complex. Finally,
AnalyseComplex function is used to determine the
interaction energy of all wild-type and mutant
complexes.
Using the same single-point mutation dataset from

SKEMPI, the correlation coefficient between the
FoldX score and the experimental binding energy
change ΔΔG is 0.457, with a root mean square error
(RMSE) being 2.31 kcal/mol, compared to the profile
score that has the correlation coefficient 0.675 and
RMSE 1.82 kcal/mol. These two score terms are
complementary, which are built on different principles.
If we combine these two scores by a simple linear
combination:ΔΔGcomb=0.9×ΔΔGevo+0.4×ΔΔGfoldx,
a correlation coefficient 0.738 can be achieved for the
single-point mutations, with the RMSE reduced to
1.70 kcal/mol. The relative weight (0.9/0.4) was
decided according to the optimized RMSE of the
randomly selected half of the single-mutation data-
base from SKEMPI. Fig. 2 presents the correlation
between experimental ΔΔG data and that predicted
by the combined evolutionary and FoldX scores, for
Fig. 2. Predicted versus experimental ΔΔG values
using combined profile and FoldX score. Data contain all
1131 single-mutation samples taken from the SKEMPI
database [13].
the 1131 single-point mutation samples in SKEMPI.
We note that we have tried both versions of
FoldX.v3 and FoldX.v4 and found that the old
version achieved a slightly higher correlation coef-
ficient (0.457) than the newer version (0.430) for the
single-point mutations. Therefore, all the data pre-
sented in this study were based on FoldX.v3 unless
mentioned otherwise.

Free-energy changes on multiple mutations

The binding free-energy changes of mutations on
different amino acids are usually non-additive due to
the coupling effect between individual residues [3];
this makes the physics-based prediction of ΔΔG
particularly difficult for the multiple-point mutations,
because the coupling effect can be complicated, the
strength of which depends on the separation of the
mutated residues along the sequence and the
relative spatial locations in the structure. Another
difficulty to physics-based approaches is that the
structural changes induced by multiple mutations are
usually larger than that by single-point mutations,
where the implicated fixed-backbone assumption is
less likely held [14].
In Table 1, we list the correlation coefficient data of

experimental and predicted ΔΔG on single and
multiple mutations by different methods. Compared
to the single-point mutations, the correlation by FoldX
is reduced by 2.57 times on double mutations and
almost vanishes for three and higher-order mutations
(column 3). The correlation coefficient by the interface
profile score is also reduced but the magnitude of
reduction is much smaller; that is, the correlation
decreases by 1.47 times on double mutation and 1.66
times on three and higher-order mutations, relative to
the single mutations (column 6).
Interestingly, the correlation coefficient by the

interface profile score is stronger for the multi-point
mutations than that by the combined profile and FoldX
scores (column 7). These data suggest that the profile
score is more robust than the physics-based poten-
tials in calculating the coupling effect of different amino
acids in the multiple mutations. Accordingly, we use
the combined score for single-point mutation, where
only the profile score is utilized for treating multiple
mutations in the BindProfX program (column 8).

Comparison of BindProfX with other statistical
potentials

In addition to the physics-based approach of FoldX,
we reported in Table 1 the results obtained from two
statistical potentials: BeAtMuSiC [19] and Dcomplex
[20]. In BeAtMuSiC, the binding free energy was
calculated by a linear combination of multiple
coarse-grained statistical terms with the weighting
parameters determined by neural network training;
the current BeAtMuSiC program allows only for
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Table 1. Summary of correlation coefficients between predicted and experimental ΔΔG values by different scoring
functions

Nmut
a Nsam

b CFol
c CBeA

d CDco
e CPro

f CProFol
g CBinX

h

1 1131 0.457 0.272 0.056 0.675 0.738 0.738
2 195 0.178 −0.057 0.459 0.425 0.459
3 or more 76 0.046 0.015 0.406 0.319 0.406
All mixed 1402 0.445 0.183 0.651 0.658 0.691

a Nmut: number of mutations involved in each sample.
b Nsam: number of mutation samples.
c CFol: correlation coefficient by FoldX.
d CBeA: correlation coefficient by BeAtMuSic.
e CDco: correlation coefficient by Dcomplex.
f CPro: Correlation coefficient using Profile-score.
g CProFol: correlation coefficient by profile-score + FoldX.
h CBinX: Correlation coefficient by BindProfX that uses combined score (profile-score + FoldX) for single-mutation and profile-score for

multiple-mutations.
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single-point mutation calculations. Dcomplex is a
distance-specific contact potential trained on the
monomer structures from the PDB [20]. The data in
Table 1 show that both statistics-based potentials have
a relatively lower correlation coefficient compared to
the composite FoldX potential [14], which is consistent
with the observation in the previous study [4]. The
outperformance of BindProfX demonstrates again
the advantage of the structure-profile based approach
over both the statistics and physics-based potentials.

BindProfX on low-resolution complex structure
models

The experiments tested above are all based on
experimental complex structures. To examine the
performance of BindProfX on low-resolution structures,
we tested the profile score on an independent mutation
set taken from the ZEMu dataset [21], where only
complex reconstructed from the monomer structures
solved in a unbound form used. Here, we only
consider the mutations involved in dimer complexes
with those involved in higher-order complexes ex-
cluded. We also found several mutations in the ZEMu
dataset that have inconsistent amino acid type to that
in the PDB structure (e.g., “Immunoglobulin FC/
Fragment B of protein A” in 2jwd_3dz8_1fc2 has a
single mutation “YC133W” in ZEMu, but residue 133
of chain C in the structure is actually W, not Y); these
mutations have been excluded as well. A final set of
104mutations from the ZEMu set is listed in Table S4.
To calculate the BindProfX score, we first con-

structed the complex structures by overlaying the
unbound monomer structure to the template com-
plex structure provided by ZEMu, using the TM-align
structural alignment program [22]. The BindProfX
program is then used to calculate ΔΔG values based
on the interface analogous alignments searched
from the NIL database. As shown in Table S4,
BindProfX achieves an overall correlation of 0.454 to
the experimental values, which is 3.8 times higher
than that of ZEMu (0.118), which was based on
FoldX potential [14] using the complex structure
refined from MacroMoleculeBuilder (MMB) simula-
tions after the structural-alignment overlay [21].
We note that the complex structures used by

BindProfX were built by a simple structure-alignment
overlay without the MMB refinement. Given that the
structural profile construction is not sensitive to the
atomic details of the interface structures, the skip of
the MMB refinement should not affect much of the
BindProfX performance. The ZEMu ΔΔG values
were directly taken from the Supplementary Infor-
mation of Ref. [21], where the correlation coefficient
we obtained (0.118) is lower than that reported in the
ZEMu paper (0.34); this is probably due to the fact
that only a subset of the ZEMu dataset was used
here, as the mutations from higher-order complex
structures and those with inconsistent amino acid
types have been excluded from our calculation.
Conclusion

We developed a renewed algorithm, BindProfX, to
assess the binding free-energy changes of protein–
protein interactions induced by single- or multiple-point
mutations. Different from the statistics and physics-
based approaches that are based on atomistic
interactions between protein structures, BindProfX is
built on the structural and evolutionary profile analyses
that are derived from the interface analogies in thePDB
structure databases. A large-scale benchmark test on
mutation samples shows that the BindProfX generates
ΔΔG with a stronger correlation with the experimental
data than both the statistical and physical potentials.
Because the approach relies more on the global

interface structure comparison rather than the subtle
atomic-details of the complex structures, the BindProfX
prediction has the potential to be used for the cases
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with low-resolution complex structure built by protein
docking [5,23] and multi-chain threading approaches
[6,24].Ona test set of 104mutationswith only unbound
monomer structures available [21], BindProfX uses the
complex structure docked from structural overlay of
monomers onto the homologous complexes and
achieved a correlation 0.454 to the experiment that is
3.8 times higher than that calculated from the
physics-based potentials. The study also demonstrat-
ed the robustness of BindProfX in predicting multiple-
point mutations, in which the correlation from statistics
and physics-based potentials almost vanishes but the
profiling score retains a strong correlation coefficient
(0.406) to the experimental ΔΔG data in the three and
higher-order mutations.
Compared to an earlier version of BindProf [4], the

major difference is in the derivation of the interface
profile scoring function from the interface MSA. In
BindProf, the profile was calculated based on the
log-odds likelihood score [9], whereas the approach
in this study calculated the binding free-energy as
the logarithm of relative Boltzmann possibility of
mutant and wild-type amino acids. Three pseudo-
counts, including fix-number, gap penalty and
evolutionary composition, were introduced to offset
the limited counting of interface analogies in the
current structure databases. These pseudo-counts
were found to be particularly useful for the cases that
have less than 3 homologous complexes identified.
Mathematically, the log-odds likelihood score counts

only for the similarity between the target amino acids
and a set of amino acids at the interested position by
the average BLOSUM substitution scale, while the
relative frequency of the target amino acids appearing
at the position, which reflects the propensity of the
amino acids among different binding sites, is missed.
The BindProfX score measures both the probability of
the target amino acids at the binding site and the effect
of amino acid substitution with each other, with the
latter counted by the evolutionary pseudo-count (Nevo)
in Eq. (2). In fact, if we increase γ to make Nevo much
larger than the observed amino acid number (Nobs), the
result of BindProfX would become almost the same as
that by the log-odds likelihood score. Similarly, if we
reduced γ to 0, that is, ignoring the similarity between
amino acids, the correlation will also decrease as
shown in Fig. 1d. Thus, although the pseudo-counts
were originally introduced for offsetting the limit of data
samples, they provide a balanced count of different
sources of information from frequency and mutation,
the former of which has been missed in the log-odds
likelihood scoring.
The large-scale benchmark data showed that the

new approach could significantly enhance the
correlation of calculated ΔΔG with the experimental
data by almost doubling the correlation coefficient
value provided by the profile score from BindProf.
The second advantage of the approach is that there
are only very few free parameters, including the
weights combining physics-based potentials, where-
as in the BindProf program a neural-network training
was developed to combine different energy terms,
which can be in the danger of over-training on the
test and training samples [4].
Among many potential uses of the PPI mutation

predictions, including, for example, function analyses
of protein networks and disease diagnosis [2,25,26],
the one particularly interesting to us is the possibility to
switch and/or gain new protein–protein interactions
through the redesign of nature protein sequences.
The application of the BindProfX scoring approach to
guide the evolutionary-based protein design [27] on
protein–protein interactions is under progress.
Methods

NIL

Our NIL is derived from the PIFACE library [7] that
consists of 130,209 protein dimer interfaces extract-
ed from the PDB. These interfaces were first
classified into 22,604 clusters according to interface
structural similarity, where a set of non-redundant
interfaces is then collected from each cluster with a
sequence identity cutoff 50%. The final NIL contains
24,962 dimer interfaces from all the clusters, which
can be downloaded at http://zhanglab.ccmb.med.
umich.edu/BindProfX/download/.

Interface structure comparison and alignment

Interface alignment and structural analog search
are performed by the I-align program [15], which is
built on IS score:

IS�score ¼ S þ s0
1þ s0

ð4Þ

where S ¼ 1
LQ

∑Na
i¼1

f i
1þðd i=d0Þ2 is the raw interface

similarity score, and s0 ¼ 0:18− 0:35
LQ

0:3 is a scaling

factor to normalize the interface size. In the raw
score S, LQ is the average number of interface
residues, Na is the number of aligned interface
residues, fi is the fraction of conserved interface
contacts at ith aligned position, and di/d0 is the
normalized Cα distance at the ith aligned position.
When running I-align, non-sequential alignment is
allowed, that is, the alignment of interfacial residues
does not need to follow their sequential order.

iPTM

A hierarchical procedure is developed to construct
the pool of interface pairs that was used to create the
iPTM. First, from the PIFACE library [7], 1083

http://zhanglab.ccmb.med.umich.edu/BindProfX/download/
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representative dimer structures were selected from
the 1083 dimer clusters that have N20 members.
I-align is then used to compare the 1083 represen-
tative dimers with the 24,962 dimers in the NIL,
resulting in 1083 new dimer clusters with a cutoff of
IS score N0.4. An all-to-all sequence and interface
alignment is then conducted on all the dimers in each
of the new dimer clusters. Only those dimer pairs
with an IS score N0.5 and sequence identity b0.7
were selected, which resulted in 40,299 aligned
dimer pairs. Considering a Cα distance cutoff b1 Å,
we obtained 1.16 million of aligned residue pairs
from the 40,299 aligned dimer pairs.
The iPTM is derived by

M A;Bð Þ ¼ p A;Bð Þ
q Að Þ ð5Þ

where p(A,B)= [N(A,B)+N(B,A)]/2Npair and q(A)=
N(A)/Nres · N(A,B) is the number of residue pairs
with amino acid type A and B, Npair (=1.16 million) is
the total number of residue pairs, N(A) is the number
of residues with type A, Nres (=2*Npair) is the total
number of residues in the selected interface pool.
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