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Abstract

Computer-based structure prediction becomes a major tool to provide large-scale structure models for
annotating biological function of proteins. Information of residue-level accuracy and thermal mobility (or
B-factor), which is critical to decide how biologists utilize the predicted models, is however missed in most
structure prediction pipelines. We developed ResQ for unified residue-level model quality and B-factor
estimations by combining local structure assembly variations with sequence-based and structure-based
profiling. ResQ was tested on 635 non-redundant proteins with structure models generated by I-TASSER,
where the average difference between estimated and observed distance errors is 1.4 Å for the confidently
modeled proteins. ResQ was further tested on structure decoys from CASP9-11 experiments, where the error
of local structure quality prediction is consistently lower than or comparable to other state-of-the-art predictors.
Finally, ResQ B-factor profile was used to assist molecular replacement, which resulted in successful
solutions on several proteins that could not be solved from constant B-factor settings.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

With the rapidly increasing gap between the number
of protein sequences and the number of experimentally
characterized structures, computer-based structure
prediction becomes a major means for the molecular
and cellular biologists to obtain three-dimensional
structure models of proteins for interpreting the
biological function or designing new biochemical
experiments. Although progress has been constantly
witnessed on structure predictions in the community-
wideCASP experiments [1], a reliable estimation of the
quality of predicted structure models, in particular, the
residue-level local accuracy that is critical to the
structure-based functional analyses (such as active-
site recognition, ligand docking and drug screening), is
often missed in most of the state-of-the-art structure
prediction pipelines [2].
Another highly relevant but often-missed local

feature in structure prediction is the inherent thermal
er Ltd. All rights reserved.
mobility of protein atoms. At the absolute zero of
temperature, protein atoms are assumed to stay at
the equilibrium position of the lowest energy.
However, as the temperature increases, the ambient
thermal energy causes the atoms to oscillate around
the equilibrium positions, the extent of which often
varies depending on the three-dimensional structure
and the interaction with ligand and solvent atoms.
The atomic motion can be experimentally measured in
the X-ray crystallography as B-factor (or temperature
factor), which was introduced as an amendment factor
of the structure factor calculations since the scattering
effect of X-ray is reduced on the oscillating atoms
compared to the atomsat rest [3]. TheB-factor of the j th
atom can be formally written as Bj = 8π2〈rj

2〉, where rj
corresponds to the displacement of the jth atom from its
equilibrium position. The thermalmotion andmobility of
protein atoms are closely linked to how the protein folds
to the native state and how it interacts with specific
binding partners in the cellular environment [4].
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Table 1. Summary of the RSQ predictions on the 635 test proteins.

Groups Npro TM do (Å) dp (Å) Δd (Å) PCC AUC

C-score N −1.5 506 0.80 2.7 (0.79) 2.2 (0.82) 1.4 (0.12) 0.69 0.89
C-score b −1.5 129 0.40 10.8 (0.4) 8.6 (0.32) 6.4 (0.22) 0.53 0.78
Overall 635 0.71 4.3 (0.72) 3.4 (0.72) 2.4 (0.14) 0.66 0.87

Numbers in parentheses are the values computed after normalizing the distance dp and do using Eq. (2).
Npro: Number of proteins in the set.
TM: Average TM-score of the first I-TASSER model.
do (dp): Observed (predicted) distance between the model and the native structures.
Δd: Average difference between do and dp.
PCC: PCC between predicted and observed distances.
AUC: AUC of the ROC.
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In this work, we aim to develop a unified pipeline,
ResQ, for the estimation of the residue-specific
quality (RSQ) of protein structure prediction and the
inherent B-factor profile (BFP) of all residues along
the chain. A major advantage of the pipeline over
many other sequence or structure-based quality
prediction approaches [4,5] is that ResQ takes
into the consideration of the intermediate proce-
dures of structure modeling simulations (e.g., struc-
tural variations of the simulation trajectories) and
homology-based data mining (e.g., multiple template
alignments from threading and structural alignment
searches); the intermediate modeling features have
also been used by several other structural error
predictors [6,7]. Since these procedures are common
setting in most of the cutting-edge protein structure
assembly approaches, the inclusion of the intermedi-
ate features should not compromise the general
usefulness of the ResQ program. The method also
contains the single-model options to model RSQ and
BFP from the structure alone†.

Results and discussion

Datasets

A total number of 1270 non-redundant single-domain
proteins were collected from the PDB, which have a
pair-wise sequence identity b30%with size from 50 to
300 residues. We randomly selected half of the
proteins for training and the remaining for test of
ResQ. Because the thermal motion factors in protein
crystals can be affected by systematic errors such as
experimental resolution, crystal contact and refine-
ment procedures, the raw B-factor values are usually
not comparable between different experimental struc-
tures. We calculate a normalized B-factor, which can
reduce the systematical variations and is defined as:
bj = (Bj − μ)/σ, where Bj is the raw B-factor value of
the jth residue for the alpha-carbon atom; μ and σ
are the mean and standard deviation along the
target sequence, respectively. The set of the normal-
ized B-factor values along the target chain are called
BFP.
RSQ and BFP predictions by ResQ on I-TASSER
models

Overall RSQ results. I-TASSERwasused to generate
structure predictions for 635 non-redundant testing
proteins. A total of 483 proteins are categorized into
Easy and 152 proteins are categorized into Hard
targets according to the significance score of the
LOMETS alignments [8]. After excluding the homolo-
gous templates, I-TASSER generated the first models
with an average TM-score of 0.71 and an RMSD of
5.7 Å; these modeling results are largely consistent
with the results from the I-TASSER modeling in the
recent CASP experiments [9,10].
ResQ was applied to the first I-TASSER models to

estimate the distance of each residue to the native.
As shown in Table 1, the average distance by ResQ
(dp) is 3.4 Å, which is consistently lower than the
observed distance (do) of the residues to the native
(4.3 Å), resulting in an average difference between
dp and do, Δd = 2.4 Å. This consistent difference is
mainly due to the lower distance estimation for the
residues of large modeling errors. If we rescale dp
and do by the TM-score scale that was designed to
depress contribution of large distance errors [11]
[see Eq. (2) in Methods], the consistent difference
between dp and do disappears, both being 0.72 (see
value in parentheses of Table 1).
We further split the test proteins into two groups

based on the I-TASSER confidence score (C-score),
that is, the high-confidence or low-confidence groups
with a C-score above or below −1.5. As expected,
models with a high C-score have a much better quality
(TM-score = 0.8) than those with a low C-score
(TM-score = 0.4). Accordingly, the RSQ prediction for
the high C-score proteins is much more accurate
(Δd = 1.4 Å) than that of lowC-score (Δd = 6.4 Å). The
average Pearson correlation coefficient (PCC) and
area under the curve (AUC) values of the high C-score
models are also higher than those of low C-score ones
by 30% and 14%, respectively (Table 1).
The dependence of RSQ prediction on C-score is

expected because for the targets of a low confidence,
most of the I-TASSER models have an incorrect fold



695Estimation of B-factor and Residue-Specific Quality
(TM-score b 0.5) and the actual distance from model
to the native is high (~10.8 Å). Thus, the estimation of
such high distance is statistically more difficult. In
Fig. 1a, we divide the residues into 20 bins according
to their observed distance on the I-TASSER models
to native (do), and we compute the average errors of
the predicted distances in each bin (Δd). The majority
of residues (N75%) was well modeled by I-TASSER
with a distance to the native of b3 Å. ResQ predicted
the distance for these residues accurately with a
small Δd, that is, 0.56 Å, 0.60 Å and 0.96 Å for the
distance bins [0, 1], [1, 2] and [2, 3], respectively.
However, with the increase of the modeling error, the
error of the RSQ predictions increases almost linearly
with do.
RSQ predictions on different local structures. In
Table S2 in the supplementary materials, we
present ResQ predictions for the 506 targets with
C-score N −1.5, with the residues split into six
disjoint subsets: (aligned or unaligned) × (alpha,
beta or coil). A residue is defined as aligned if there
are N40% of LOMETS templates aligned on it, or
unaligned otherwise, where alpha, beta and coil
follow standard secondary structure definition.
Since I-TASSER modeling is built on multiple

threading templates, there is a strong correlation
between the structural error (do) and the alignment
coverage of the residues. The residues on the
threading aligned regions have a much smaller
distance deviation from the native (2.5 Å) than the
unaligned residues (11.7 Å) because structures of
on the threading aligned regions have a higher
number of spatial restraints that result in a higher
accuracy of modeling. Accordingly, the error of the
estimated RSQ is lower in the threading aligned
regions than those in the unaligned regions, as
shown by the decreased Δd in Table S2 (Columns
2–7) mainly because the residues with smaller
modeling errors tend to have a lower uncertainty
and therefore ResQ can generate more accurate
distance estimation on them (Fig. 1a). Similarly,
structural modeling in the regular secondary struc-
ture regions (alpha and beta) is generally more
accurate than that in the coil residues, which are true
in both threading aligned and unaligned regions.
The estimated RSQ is therefore closer to the actual
modeling errors in these regions.
In Fig. 1b–d, wepresent an illustrative example from

the PhoQ histidine kinase domain (PDB ID: 1id0A). In
this example, the I-TASSER assembly simulations
are more divergent in the loop region (D96-L111) as
shown in Fig. 1c; this leads to a higher predicted
distance deviation by ResQ that is consistent with the
actual high modeling error of this region shown in
Fig. 1b. The overall RSQ profile is in close agreement
with the observed distance deviations as shown in
Fig. 1d.
BFP prediction. Three approaches were tested to
generate BFP predictions. The template-based
prediction is generated by transferring the B-factors
of the threading template proteins using Eq. (S3),
while the profile-based prediction is by training the
BFP data on the sequence profile generated by
PSI-BLAST search. The third approach is a combi-
national method that trains the BFP on a combination
of threading templates and sequence profiles. A
summary of the PCC and AUC between the observed
and predictedB-factors from the three approachesare
listed in Table S3.
The profile-based training approach generated a

slightly higher PCC value (0.59) than the template-
based transferal (0.54), while the combination of the
threading templates and sequence profiles achieves
the highest PCC (0.61). The difference between the
two methods (profile-based and combined) is statis-
tically significant with the p value of the student t-test
below 10−12. A similar tendency is followed by the
AUC assessment, where the combined prediction
outperforms both template-based and profile-based
prediction methods.
In Fig. 1e, we show the predicted BFP for 1id0A by

the combination-based approach. Interestingly, the
highestB-factors occur mostly on the regions around
the loop region D96-L111, which shows some level
of correlation between local modeling error and
BFP.

Comparison of ResQ predictions with other methods
on the I-TASSER models

To benchmark ResQ with other methods, we down-
loaded and installed two recently published RSQ and
BFP prediction programs to our computers. The
SMOQ program was designed to predict residue-
specific local quality based on machine learning,
which has three options of basic (B), basic + profile
(B + P) and basic + profile + SOV (B + P + S) [5].
The PROFbval program was developed for B-factor
prediction trained on sequence profile and second-
ary structure predictions [4]. Both programs were
run with default settings on the 635 testing proteins.
For theRSQprediction, SMOQ is tested on the same

set of the I-TASSERmodels. As shown inTableS4, the
average error of the estimated distance deviation (Δd)
by ResQ is 2.4 Å, which is about 1.2 Å lower than the
best results from the SMOQ program that uses the
basic option (3.63 Å). If considering TM-score normal-
ized distance, Δd of ResQ is also lower (0.14 versus
0.26). The average PCC of the RSQ predictions by
ResQ is 47% higher than the best SMOQ results. The
difference between ResQ and SMOQ is statistically
significant with a p value b10−89 in the student t-test.
One reason for the significant improvement of RSQ
predictionsmight be that theResQhas been trained on
the I-TASSER-specific features, including structural
variations of the templates and the simulation decoys



Fig. 1. RSQ and BFP predictions by ResQ. (a) Histogram and RSQ distribution at different modeling errors (do) based
on I-TASSER models from 506 test proteins with C-score N −1.5. Open circles connected by broken curve show the
percentageof residues. Filled circleswith continuous curve are the average prediction error (Δd) in each distance bin. (b–e)An
illustrative example from1id0Ashowing theResQpredictions. (b)Superposition of theX-ray structure (red) and the I-TASSER
model (blue). (c) The ensemble of superimposed structure decoys in I-TASSER modeling. Alpha, beta and loop regions are
shown in red, yellow and green, respectively. Structure regions with a high variation are highlighted by broken circle. (d) The
predicted and observed distance errors. (e) The predicted and observed BFPs. The bottom panel shows secondary structure
of the protein.
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(see Table S1), which were not included in the SMOQ
program. In fact, wehave re-runResQby turningoff the
immediate features from I-TASSER simulations. The
result of ResQ becomes much worse, which only
marginally outperforms the best results from SMOQ
(see Tables S1 and S4). Although the degradation is
partly due to the fact that ResQ has been trained on the
full set of sequence and structure features, this result
indeed highlights the importance of the intermediate
modeling features in model quality evaluations.
The last row in Table S4 lists the result of the

B-factor prediction, where the PCC of ResQ (0.61) is
17% higher than that by PROFbval (0.52). Again, the
difference is statistically significant, which corre-
sponds to a p value in the student t-test below 10−70.
Comparison of RSQ prediction with other methods
on CASP decoys

In this section, we test ResQ for the local structure
quality prediction using the decoys that were gener-
ated in the recent CASP experiments, which gives us
an opportunity to compare ResQ with many state-
of-the-art model quality assessment programs
(MQAPs). Because the structural decoys were
generated by different methods from multiple labora-
tories, these testing data should also allow examining
the robustness of the ResQ method, which was
primarily trained on the I-TASSER decoys. Since the
intermediate features from structure assembly simu-
lation are not available on the CASP decoys, ResQ
will skip these features to generate RSQ predictions.
However, other features, including sequence-based
and structured-based database searches, are still
implemented.
The detailed comparisons of ResQ with the top

CASP predictors are listed in Table S5 (for CASP9
decoys), Tables S6 and S7 (CASP10) and Tables
S8 and S9 (CASP11), with analysis and discussion
presented in Text S4. In general, local distance error
prediction of ResQ consistently outperforms most of
theCASPMQAPpredictors, where the PCCandAUC
scores by ResQ are among the top but often slightly
outperformed by the best predictors (in particular, for
AUC). The overall data suggest that the prediction
results of the ResQ are comparable to or better than
the state-of-the-art MQAP methods in CASP.
Application of ResQ B-factor prediction to molecular
replacement

One of the important uses of the B-factor
prediction is for assisting the molecular replacement
(MR)-based structure determination in X-ray crystal-
lography. In MR, close homologous structure models
are used to replace the unknown targets for deciding
the phase of the diffraction waves so that the electron
density of the target protein can be calculated using
Fourier transformations from the diffraction pattern
data. Recently, a closely related study suggests that
local error estimates improve MR dramatically [12].
Different from the local error estimates that evaluate
the quality of target models, thermal mobility of protein
atoms candirectly the intensity of the reflectionwaves.
Therefore, appropriate B-factor estimations, which
roughly reflect the atomic thermal mobility, should be
important for correct structure factor calculation and
MR solution.
To test the effect of ResQ B-factor prediction on

MR, we collected 100 non-redundant proteins from
the PDB, which have both X-ray structure and
electron density data available and with fewer than
300 residues and ≤4 copies in the asymmetric unit.
The I-TASSER models without using homologous
templates are then used as the probe for MR. A
progressive model truncation and editing procedure
based on structural deviation score [13] was applied
to generate up to 40 truncated models for each
target, which are submitted to PHENIX [14] for
automated phase determination and model recon-
struction. It was shown that correct MR solutions
could be obtained for 54 out of the 100 proteins if we
use an optimal constant B-factor (20). Here, an MR
solution is defined as correct if more than 25% of the
target sequence can be built by the automated MR
procedure with the final structure models being
closer to the experimental structure than the starting
model.
When we applied the predicted B-factor by ResQ

to the MR program, three additional proteins (PDB
IDs: 1i12, 2ra9 and 2tnf) have the MR solution
successfully obtained. Figure 2 shows a comparison
of the final models for the three proteins overlaid on
the experimental electron density maps, which were
obtained using the ResQ B-factor prediction and the
optimal constant B-factor, respectively. Even though
the same I-TASSER model and the model editing
procedure were applied, the use of the ResQ B-factor
prediction resulted in much closer fits of the final
models with the electron density maps. The average
Rfree value, which measures how well the simulated
diffraction data match with the experimentally ob-
served diffraction pattern, was significantly reduced
from 0.53 to 0.27.
We note that the current strategy, that is, using

RSQ to truncate structural models and then using
BFP to scale atomic motion, generated the best MR
results with 57 successful targets in our test. Simply
replacing B-factor by RSQ does not improve the
results, probably due to the fact that the RSQ
information was already used in the model truncation
procedure. We also tested the procedure with using
RSQ as B-factor on the full-length models without
truncation, which could result in slightly better MR
results than that using constant B-factor; however,
the overall results are much worse than the optimal
results with model truncations [13].



Fig. 2. Structure models generated byMR overlaid on the experimental electron density image. The left and right panels
are MR results using the ResQ predicted and constant B-factors, respectively. (a) 2ra9; (b) 1i12; (c) 2tnf.
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Conclusion

We developed a new algorithm, ResQ, for unified
predictions of protein RSQ and BFP. One of the
major advantages of the method is the integration of
the intermediate information of structure modeling,
including threading coverage and conformational
variations, with the structure profile information from
homologous database searches.
ResQ was first tested on a set of 635 non-

homologous proteins with structural models by
I-TASSER simulations. The residue-level distance
to the native could be predicted with an average
error of 2.4 Å. For the models with C-score N −1.5,
which have a better global quality and are thus
more relevant to biological uses, the distance error
of RSQ is reduced to 1.4 Å. Detailed data analyses
showed that the absolute error of RSQ is highly
correlated with the quality of the structure models,
where the RSQ has a much higher accuracy in the
conserved regions of regular secondary structures
than that in other threading unaligned and coil/tail
regions. The overall results of ResQ on both RSQ and
B-factor predictions showed advantage over other
methods that do not use the intermediate structural
features.
Second, we tested ResQ on the CASP9-11 decoys

generated by various structure prediction methods.
Although no intermediate structure features are used,
the single-modelmode prediction ofResQ, built on the
sequence-based and structure-based homologous
database searches, generated local structural quality
estimations with an accuracy comparable (or superi-
or) to the best-performing MQAP methods that have
been trained from various consensus features and/or
statistics potentials. The data demonstrate the robust-
ness of the ResQ algorithm to deal with both cases
with small and large number of structure decoys.
However, when the number of reference decoys
decreased, ResQ's performance was slightly degrad-
ed, as seen by the difference in performance on the
CASP Stage 1 and 2 decoys. Part of the degradation
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is due to the reduction of the overall decoys in Stage 1;
this suggests the room for further improving ResQ, for
example, by exploring multiple statistical potentials
[15], in particular, for the low-quality decoys.
As a test of the usefulness of the ResQ predictions,

the predicted BFP was applied to 100 medium-size to
large-size proteins for assisting MR in X-ray crystal-
lography. Starting from the same set of the I-TASSER
models, the use of the ResQ predicted B-factor
resulted in successful MR solutions on three proteins
(PDB IDs: 1i12, 2ra9 and 2tnf) that were not able to
solve from the constant B-factor setting, whereby the
average Rfree value was dramatically reduced from
0.53 to 0.27 in the three examples.
The ResQ algorithm has been successfully inte-

grated with the I-TASSER pipeline, including online
server and standalone package, for the RSQandBFP
estimations. AlthoughResQwas primarily trainedwith
the I-TASSER decoys, the program can be used for
models generated by other structure prediction
methods since the intermediate features, including
query-to-template alignment and structure decoy
clustering, are standard output in the pipelines of
most state-of-the-art structure prediction approaches.
Asan illustration,we list in TableS10 theapplication of
ResQ to the models generated by QUARK-based ab
initio simulation [16] on a set of 50 non-redundant
proteins. Although the average RSQ error is higher
than that for the I-TASSER models due to the
relatively lower accuracy of the global models, for
the top 20 proteins, most having a TM-score above
0.5, the average RSQ error is 1.6 Å for the QUARK
models, comparable to the results for the confidently
predicted I-TASSER models.

Methods

ResQ method

Support vector regressions, with the implementa-
tion provided in the SVM-light package‡, are used to
train the RSQ and BFP data, with parameters and
combinations of features optimized on the 635
training proteins. The I-TASSER simulations [17]
are conducted to generate structure predictions for
the training proteins, where homologous templates
have been excluded from the threading template
library. A brief outline of the I-TASSER pipeline is
described in Text S1 in the supplementary materials.
For RSQ prediction, a total of 12 features are used

to represent each residue: 3 from structural assem-
bly simulations [i.e., average variation and standard
deviation in Eq. (S1) and relative size of SPICKER
cluster], 1 from threading templates distance varia-
tion [Eq. (S2)], 1 from TM-align structure alignment
templates distance variation, 2 from threading
alignment coverage computed from the top 200 and
10 templates, respectively, and5 from the consistency
between model and sequence-based feature predic-
tions (i.e., three probabilities in alpha-helix, beta-
strand and coil states; one for secondary structure
state; and one for relative solvent accessibility). A
detailed description of the RSQ features and their
respective contributions to the predictions are provid-
ed in Text S2 and Table S1.
For the BFP prediction, by using the window size of

9, a total of 72 (8 × 9) features are used to represent
each residue. For each residue, the 8 features include
2 from template-based assignments based on
LOMETS and TM-align, respectively [see Eq. (S3)];
1 from alignment coverage with the top 200 LOMETS
templates, 2 from relative solvent accessibility and
secondary structure predictions and 3 from secondary
structure profile including probabilities in alpha-helix,
beta-strand and random-coil states (see Text S3).
After trials and errors on the training dataset, we

found that the best results are generated using the
linear support vector regressions in SVM-light with
the parameters “−z r −c 0.5 −w 0.5”, for both RSQ
and BFP predictions.
Although ResQ has been designed to generate

both RSQ and BFP prediction, we note that RSQ and
BFP are two distinct concepts, as RSQ is closely
related with model construction methods while
B-factor reflects inherent motions of atoms in the
physiological environment that are independent from
the modeling process. In fact, we collected the data
of all the 1270 training and testing proteins and found
that the PCC between B-factor and the local error of
I-TASSER models is only 0.38§. This weak correla-
tion is probably due to the fact that the sequence
regions with a high B-factor are often less conserved
and thus models generated by template-based
methods (such as I-TASSER) tend to have a higher
local error on these regions. However, a determinate
relation between these two qualities does not exist.
Nevertheless, a combined prediction on RSQ and
BFP is feasible since both request training on multiple
local sequence and structure features. Such combi-
nation should helpmakeResQconvenient formultiple
uses on, for example, local accuracy estimation and
MR.
Assessment criteria of the RSQ and BFP predictions

Three measures are used to evaluate the accura-
cy of the RSQ prediction, where each measure is
first computed per model and then presented as an
average over all models. The first measure is the
average difference (Δd) between the predicted (dp)
and observed (do) distances of the model relative to
the native, that is,

Δd ¼ 1
L

XL

i¼1
d i
o−d

i
p

���
��� ð1Þ

where L is the length of the protein and the distances
are calculated based on the TM-score superposition
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[11]. One flaw of this metric is that Δd can be
dominated by the large distance pairs, where distin-
guishing distance errors beyond some cutoffs can be
meaningless (e.g., an error of 10 Å is not necessarily
better than20 Å). Thus,wealsouseametric based on
a normalized distance to depress the contribution of
large distance errors in RSQ evaluation, that is,

Δd 0 ¼ 1
L

XL

i¼1
d 0 i

o−d
0 i
p

���
��� ð2Þ

where do,p′ = 1/[1 + (do,p/ds)
2] and ds ¼ 1:24

ffiffiffiffiffiffiffiffiffiffiffi
L−153

p
−

1:8are a TM-score-like scale to rule out protein length
dependence of the distances [11].
The second measure is the PCC between dp and

do. The third measure is the AUC of the receiver-
operating characteristic (ROC), designed to evaluate
the ability of ResQ in discriminating between well
and badly modeled regions, where a residue is
defined as “well modeled” (positive) if the distance
from model to the native is b3.8 Å upon the
TM-score superposition, otherwise as “badly mod-
eled” (negative). PCC and AUC are the same as
used by the CASP assessors for evaluating the
accuracy of model quality estimation [18]. Following
Kryshtafovych et al., we converted dp into the range
of (0, 1) by dpn = 1/[1 + (dp/5)

2] in the AUC
calculation so that a fixed number of divisions can
be used for different data samples to draw the ROC
curves. Here, the selection of 3.8 Å as a cutoff is
from the CASP assessors, which may be too high in
this study since the AUC values are generally high
for most predictions. We tested the impact of the
distance cutoff on the AUC calculations using 635
test proteins. As expected, the AUC value decreases
slightly with reduced distance cutoff, that is, the
average AUC decreases from 0.88 to 0.87, 0.86,
0.84 and 0.79, respectively, when the distance cutoff
reduced from 5 to 4, 3, 2 and 1 Å.
The BFP prediction is evaluated by the Pearson's

correlation between the predicted and the experi-
mental B-factors, which was also used in previous
B-factor prediction studies [4]. Similar to the RSQ
evaluation, we also use AUC for measuring the
ability in discriminating between stable and flexible
residues in structures, where a residue is defined
as stable (positive) if the normalized B-factor is
below 0 or as flexible (negative) otherwise. For
uniform ROC division, we have normalized the
predicted B-factor values (b) to the range of (0, 1) by
1/[1 + exp(−b)].
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