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Abstract

Motivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target

membrane proteins, which constitute nearly half of drug targets in the contemporary drug discov-

ery industry. While the majority of drug discovery studies employ existing GPCR and ligand inter-

actions to identify new compounds, there remains a shortage of specific databases with precisely

annotated GPCR-ligand associations.

Results: We have developed a new database, GLASS, which aims to provide a comprehensive,

manually curated resource for experimentally validated GPCR-ligand associations. A new text-

mining algorithm was proposed to collect GPCR-ligand interactions from the biomedical literature,

which is then crosschecked with five primary pharmacological datasets, to enhance the coverage

and accuracy of GPCR-ligand association data identifications. A special architecture has been

designed to allow users for making homologous ligand search with flexible bioactivity parameters.

The current database contains �500 000 unique entries, of which the vast majority stems from lig-

and associations with rhodopsin- and secretin-like receptors. The GLASS database should find its

most useful application in various in silico GPCR screening and functional annotation studies.

Availability and implementation: The website of GLASS database is freely available at http://

zhanglab.ccmb.med.umich.edu/GLASS/.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

G protein-coupled receptors (GPCR) represent one of the largest

families of transmembrane proteins that bind extracellular mol-

ecules and activate intracellular signal transduction pathways,

which mediate many physiological functions through their inter-

action with heterotrimeric G proteins. Many human diseases,

including cancer and diabetes, have been found to be associated

with the malfunction of the biological roles of GPCRs (Dorsam and

Gutkind, 2007). Currently, �30–50% of drugs on the market target

GPCRs, making them one of the most attractive membrane recep-

tors for drug development (Klabunde and Hessler, 2002;

Overington et al., 2006). While experiment-based assays for novel
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chemical compounds remain the standard procedure for drug dis-

covery, in silico screening is gaining increasing acceptance as an im-

portant complementary method to narrow down the drug searching

scope and to guide experimental design. Another advantage of the

computational approach is due to its high speed and low cost, which

enables high-throughput and large-scale database screening

(Lipinski et al., 2001).

Both the experimental and computational drug discovery

approaches rely on existing GPCR-ligand experimental data to pro-

vide insight for screening and selecting new drugs. A variety of

GPCR-orientated databases, such as GPCRDB (Horn et al., 1998),

TinyGRAP (Beukers et al., 1999), GPCR-OKB (Khelashvili et al.,

2010), GDD (Gatica and Cavasotto, 2012) and GPCR-RD (Zhang

and Zhang, 2010), have been developed, which generated important

impacts on various molecule-level studies on the elucidation of

GPCR structure and function.

There are however very few databases that can provide compre-

hensive resources for GPCR-ligand interactions that are essential in

assisting GPCR virtual screening studies (van Laarhoven et al.,

2011; Weill and Rognan, 2009; Zhou and Skolnick, 2012). One dif-

ficulty in developing such databases is that the GPCRs can be associ-

ated with a large number of ligands in various binding affinities, and

the GPCR-ligand association data in many chemical libraries are

often mixed with various false-positives. A collection of GPCR-

ligand associations with stringent experimental validations and care-

ful human curation is essential to ensure the quality of the datasets.

Second, with the success of the sequencing and structural genomics

projects, the number of available GPCR and ligand interactions in-

crease rapidly. But most of the new studies are scattered in a wide

spread of publications and archives, which makes it difficult to keep

the databases up to date. For example, GLIDA (Okuno et al., 2008)

was a useful GPCR-ligand binding database designed for chemical

genomic drug discovery; but it has ceased updates to its server since

October 2010. The current GLIDA library contains around 39 000

GPCR-ligand entries, whereas the amount of unique GPCR-ligand

interactions available in the literature in our estimation is above

500 000 by the combination of the pharmacological database and

literature search. The missing of such a substantial amount of new

data significantly degrades the usefulness of the databases to the ex-

perimental and computational drug discovery studies.

In this study, we have developed a new GPCR-ligand association

(GLASS) database for use as a general platform in assisting GPCR-

related drug screening studies. Drawing from multiple primary data

sources, GLASS focuses on a comprehensive and yet precise collec-

tion of the experimentally validated GPCR-ligand interactions with

strong affinities. To ensure the completeness of the database and to

keep it up to date, we incorporate a newly developed text-mining

pipeline to search through PubMed literature to discover new

GPCR-ligand interactions, which are then crosschecked with the pri-

mary pharmacological datasets to ensure the quality of data collec-

tion. All the GPCR-ligand association data are manually curated

and made freely available to the community.

2 Data and Methods

The GPCR-ligand association data in GLASS consist of two major

resources. The first resource consists of five primary pharmaco-

logical datasets from ChEMBL (Gaulton et al., 2012), BindingDB

(Liu et al., 2007), IUPHAR (Sharman et al., 2011), DrugBank

(Knox et al., 2011) and PDSP (http://pdsp.med.unc.edu/pdsp.php),

which contain various bioactive ligand and protein interaction data.

The second is the GPCR-specific text mining from PubMed

abstracts. A flowchart of the GLASS construction is depicted in

Figure 1.

2.1 Database recombination pipeline
A list of all reviewed UniProt IDs pertaining to GPCRs was first col-

lected from UniProtKB (Magrane and Consortium, 2011). Data rele-

vant to each GPCR, such as species, gene name and primary

sequence, were simultaneously extracted. We used a combination of

synonymous GPCR names from IUPHAR and UniProtKB.

In the second step, flat line databases were downloaded from the

pharmacological databases of ChEMBL, BindingDB, IUPHAR,

DrugBank and PDSP. Data entries were filtered only for GPCR-

related ones using UniProt ID and compiled together. The ligands

without chemical identifiers were eliminated. Meanwhile, the statis-

tical analysis of the distributions among the Ki, Kd, IC50 and EC50

values revealed that the majority (>95%) of the experimental ligand-

GPCR associations have the activity values below 10mM

(Supplementary Fig. S1). Thus, an activity filter was implemented,

i.e. the entries with a Ki, Kd, IC50 and EC50 higher than 10mM

were excluded, in order to sieve out weak and suspicious GPCR-

ligand associations. Once an entry passes all criteria, records on the

pharmacological data (e.g. ligand activities), the references to the ori-

ginal literature of study, and the chemical identifiers such as SMILES

or InChI, are collected from the original pharmacological databases.

2.2 Text mining pipeline
The abstracts of all literatures were collected through NCBI Entrez

system (Maglott et al., 2011) using BioPython (Cock et al., 2009).

The mining process of the GPCR-ligand associations from the

retrieved texts contains two steps: identification of GPCR names,

ligand names and binding triggers and recognition of the GPCR-

ligand interactions (Fig. 1).

Step-1: Identification of GPCR names, ligand names and binding

triggers. Two named entity recognition tools were applied to extract

GPCR and ligand names from the abstracts. First, SciMiner (Hur

et al., 2009) was used to identify the names of genes and proteins.

These names are then matched and associated with HGNC [HUGO

(Human Genome Organization) Gene Nomenclature Committee]

official symbols (Gray et al., 2014). Because SciMiner can simultan-

eously recognize both GPCR proteins and small peptides that bind

to the GPCRs, names returned by SciMiner are split into two catego-

ries. Entries that are present in the UniProt GPCR list were collected

as receptors, and those that are not present were collected as pos-

sible ligands. Since the same protein acronym can be shared by mul-

tiple distinct receptors, a scoring scheme based on the co-occurrence

of abbreviated symbols and longer descriptions in the same docu-

ment was employed in SciMiner to overcome the ambiguity of the

acronyms.

Second, we exploited ChemSpot 2.0 (Rocktaschel et al., 2012) to

extract the chemical names of small molecules and short peptides,

which is often considered to be more challenging than protein name

recognition due to the variation of naming systems used by different

literature. To increase the sensitivity of chemical recognition,

ChemSpot uses a hybrid pipeline integrating a condition random

field (CRF) model trained for IUPAC entry identification and a dic-

tionary-based approach built from ChemIDplus for extracting

drugs, abbreviations, molecular formulas and trivial names. The rec-

ognized chemical names are then matched and connected to an

InChI string (Rocktaschel et al., 2012), where common solvents

including water molecules and the named entities that were not

associated with identifiers in the program output were discarded.

3036 W.K.B.Chan et al.

 at U
niversity of M

ichigan on O
ctober 3, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

,
,
,
,
),
,
,
,
,
-
-
-
-
2. DATA AND METHODS
,
,
,
,
),
http://pdsp.med.unc.edu/pdsp.php
Fig. 1.&ensp;Flowchart for the construction of the GLASS database.
.
,
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv302/-/DC1
,
.
,
,
,
ure
,
,
,
,
http://bioinformatics.oxfordjournals.org/


With both groups of GPCR and ligand entities, the frequency of

occurrences was calculated for each abstract, which was subsequently

stored in the database together with raw abstract texts and named en-

tity positions. The name frequency data were later used to sort text

mining results in the protein and ligand query pages. All ChemSpot

identifications are treated as possible ligands and are tested in Step-2.

Binding triggers are the key words that explicitly describe biolo-

gical relationship of the ligand and GPCR names, which are recog-

nized from the target sentences using regular expression match.

Three types of triggers are covered in our regular expression diction-

ary: (i) verbs that describe the biological phenomena, such as ‘bind’,

‘activate’, ‘antagonize’; (ii) nouns and adjectives that describe

properties of ligands, such as ‘agonist’, ‘antagonist’, ‘inhibitory’; (iii)

nouns that describe properties of the interactions, including ‘Ki’,

‘Kd’, ‘affinity’, ‘EC50’, ‘IC50’. A benchmark on 200 manually

labeled abstracts showed that the regular expression can retrieve the

correct ligand-GPCR binding triggers with a precision of 78.8% and

a recall of 86.0%.

Step-2: Recognition of ligand-GPCR associations. The associ-

ation of the GPCR and ligand names is recognized using a depend-

ency tree based machine-learning model that is trained on a set of

abstracts with known ligand-GPCR associations. The dependency

tree based classification was previously proposed by Ozgur and

coworkers to extract protein-protein interactions from text mining

Fig. 1. Flowchart for the construction of the GLASS database
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(Erkan et al., 2007; Ozgur and Radev, 2009). Here we extend the

idea for GPCR-ligand association recognition.

First, we collect all sentences that contain at least one GPCR

name, one ligand name and one binding trigger. These sentences are

then parsed into a tree of structured words with semantic predicate-

argument relationships, called a typed dependency parse tree (see

Fig. 2), using the Stanford CoreNLP parser (Manning et al., 2014).

For each sentence and every combination of a GPCR name, a ligand

name and a binding trigger, the dependency parse trees returned by

Stanford CoreNLP were pruned to retain the simplest tree that con-

nects all three words.

As illustrated in Figure 2, three paths were extracted from the

pruned tree: (i) connecting the GPCR name on one end and the lig-

and name on the other end; (ii) connecting the GPCR name and the

binding trigger; (iii) connecting the ligand name and the binding

trigger. These three paths were grouped together and 3310 groups

of paths, extracted from 100 abstracts in the training set, were ran-

domly selected from literature and manually labeled based on

whether a true interaction is present in the paths. Following Ozgur

et al (Erkan et al., 2007; Ozgur and Radev, 2009), given every two

groups of paths, each path from one group was aligned against its

corresponding one from the other group using the edit distance met-

ric. This alignment can enhance the consensus of the sentence struc-

ture and therefore improve the efficiency of classification.

Three similarity scores were calculated as the edit distances be-

tween all three pairs of aligned paths. A N�3N matrix (N¼3310

being the number of paths in the training set) is constructed using

these pair-wise similarities, which is passed as a 3N-dimensional fea-

ture space to train a Gradient Boosting Decision Tree (GBDT)

model. The training starts with an initial decision tree classifier

trained on the initial data, branching of which stops at the third

level. Based on this weak classifier, GBDT then iteratively calculates

the prediction errors against the training set, constructs new decision

tree classifiers trained on the prediction errors and adds them into

the model (Friedman, 2001).

The GPCR-ligand associations recognized by the GBDT model

in text mining are crosschecked with the data in the pharmaco-

logical datasets. Any conflicts between the two sources will be veri-

fied by manual checking before the data are integrated into GLASS.

Manual reading of original articles and comparison with original

databases are often needed at this step for ensuring the quality of the

data. Nearly 20% of GPCR-ligand associations, which are not

included in the current pharmacological datasets, have been ex-

tracted from literature after manual cross validation.

2.3 Architecture of the GLASS library
The GLASS database was built using MySQL, while the Internet

webpage was augmented with a combination of Perl and Python

CGI scripts to facilitate the communication of the interfaces with

the MySQL database.

For each GPCR-ligand association, relevant chemical informa-

tion, such as XlogP, molecular weight, hydrogen bond acceptor and

donor, 2D structure image, synonyms and IUPAC name, were ex-

tracted from PubChem using the compound identifier (CID) of each

ligand via their Chemical Identifier Exchange service. The 3D SDF

files were generated from respective canonical SMILES strings using

Open Babel (O’Boyle et al., 2011).

For the GPCRs from the human genome, the associated condi-

tions and diseases from experiments were compiled from TTD (Qin

et al., 2014) when available. The 3D structure information is pro-

vided for each GPCR by cross-linking to the PDB if the experimental

3D structures are available. A JSmol image is created for each

GPCR to allow users to view the 3D structure of the receptor.

To facilitate comparative interaction studies, GLASS provides an

interactive search engine to allow users to collect homology ligand/

compounds through either substructure or chemical similarity from

the experimentally validated data. Using the JSME molecular editor

(Bienfait and Ertl, 2013), users are allowed to draw a chemical

structure of the compounds, which is then converted into a SMILES

string. Subsequently, it is transferred to Open Babel for either a sub-

structure or similarity search against the indexed ligands. An SDF

file is pre-created containing all ligand indexes in order to expedite

the searching process. For the chemical similarity search, users are

able to select the Tanimoto coefficient cutoffs. The resultant ligands

are returned as SMILES strings. Finally, the SMILES strings are used

as probes to search against the database in order to collect homolo-

gous ligands, which are returned as images of the chemical structure

and their names. Tanimoto coefficients are returned, as well, if the

similarity search was selected.

3 Results

3.1 GLASS in numbers
As of the time of submission of this article, GLASS contains 913 908

GPCR-ligand entries, collected from multiple sources of

Fig. 2. An illustrative example of the dependency syntax tree parsed from the

sentence ‘We present our studies to demonstrate that HM74A, but not HM74,

binds niacin at high affinities’. Here HM74A and niacin are associated where

HM74 and niacin are not. An arrow points from an origin (or a parent node) to a

word (or a child node) that is syntactically dependent on the origin. Arrows are

assigned with tags, describing what attributes child nodes contribute to their

parent nodes. After pruning the dependency tree, only the bold edges are left,

which connect a receptor name on one side and a ligand name on the other

side, and are represented as a chain of words and tags, or a path. Paths are gen-

erated for every possible pairs of GPCRs and possible ligands in a sentence

3038 W.K.B.Chan et al.
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experiments. Some associations appear more than once in different

experiments. After removing the redundant entries, there are

513 246 unique associations each containing a species-specific

GPCR paired with an interacting ligand (460 439 unique associ-

ations remain if removing the redundancy across species and ac-

counting for orthologues).

A total of 3048 GPCR entries in GLASS were extracted from

UniProt (Magrane and Consortium, 2011), where 681 GPCRs have

at least one ligand associations. The other 2367 GPCR entries have

no ligand associate data in the experiment literature as of the present

time. Among the GPCR’s with ligand associations, there are �754

different types of ligand/compound associations per receptor on

average; but the median value is only 77 due to the fact that several

receptor families have a dominantly high number of ligand associ-

ations (see below). The total number of unique ligands in GLASS is

277 651. A summary of the current GLASS database is presented in

Table 1.

Most of the ligand associations in GLASS are skewed towards

the Class-A rhodopsin-like family of GPCRs, which makes up

�85% of the association data (Fig. 3). The top five receptors in the

rhodopsin-like family, all of which have more than 65 000 ligand as-

sociations, are from serotonin, adenine and adenosine nucleotide,

adrenergic, opioid and dopamine receptors. These receptors also

represent the set of the most popularly studied GPCRs in literature

due to their importance in pharmaceutical applications and re-

search. A histogram of the ligand associations for the entire Class-A

family is shown in Supplementary Figure S2.

The non-rhodopsin-like families of GPCRs constitute a far

lesser proportion of ligand associations. Nevertheless, the human

glucagon-like peptide 1 receptor from the Class-B secretin family

contains the most abundant GPCR-ligand associations among all

the human GPCRs, containing over 100 000 entries. The other

non-rhodopsin-like GPCRs with more than 2 000 GPCR-ligand as-

sociations are the metabotropic glutamate and pheromone family

of receptors, both from the Class-C metabotropic glutamate/

pheromone family. There are only two members (UniProt ID:

Q88935 and P56726) from the Class-F family that have associated

experimental data, while little to no GPCR-ligand associations are

found for the GPCRs from the fungal mating pheromone (Class-

D), cyclic AMP (Class-E), slime mold, ocular albinism (OA) and

taste receptor (T2R) families. Supplementary Figures S3–S5 list the

detailed data distributions of ligand associations for Class-B, C

and F families. This highly uneven ligand association distribution

explains the reason that the median number of ligands per receptor

is much lower than the average.

3.2 Database features
The GLASS database is updated every month, and all data are made

freely available at: http://zhanglab.ccmb.med.umich.edu/GLASS/.

Three features have been developed for searching, browsing, or

downloading of the GPCR-ligand association data in GLASS, as

shown in Figure 4, which are outlined in the following.

3.2.1 Searching GLASS

An efficient search function is essential to the development of bio-

medical databases. GLASS provides three options on the home page

for searching the database based on three types of queries: (i)

GPCR-based, (ii) ligand-based and (iii) GPCR-ligand-based. Users

can choose these options by selecting the radio button of interest be-

fore or after typing the desired input (Fig. 4).

Using the GPCR-based search, users can search for a GPCR of

interest using a variety of inputs, including UniProt ID, gene name,

or associated medical conditions. Clicking on the ‘Search’ button

takes the user to a page listing all GPCRs that match the query;

clicking and following the link of the GPCR of interest will bring the

user to a detailed page with GPCR-related information, including

GPCR name, species, gene name, synonyms, associated diseases, pri-

mary sequence and its length, atomic structural model and database

identifiers. All ligands that are associated with the GPCR are listed

at the bottom of the page. Figure 5 presents an example of output of

the GPCR-based search from the human b2 adrenergic receptor.

The ligand-based search requires knowledge of the name, chem-

ical identifier, or PubChem ID of the ligand of interest. Clicking on

the ‘Search’ button will bring the user to a page of results of all lig-

ands matching the query. Clicking and following the link of the lig-

and of interest will bring up a detailed page with the ligand name,

Table 1. Summary of the GLASS database

Type of entry Number of entries

All GPCRs 3048

With ligand association 681

Without ligand association 2367

Unique ligands 277 651

Drug-like ligands 190 145

All GPCR-ligand associations 913 908

Unique associations 513 246

Fig. 3. Distribution of GPCR-ligand data in GLASS by family. All values

presented as percentage of total. Fungal, cyclic AMP, slime mold, OA and

T2R receptors, which have insufficient (<10 entries) or no data, were

excluded from the plot

Fig. 4. A screen shot of the GLASS homepage showing options for searching,

browsing and downloading of database-related data

GLASS 3039
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molecular formula, IUPAC name, synonyms, physico-chemical

properties, chemical identifiers, database identifiers, 2D chemical

structure and a list of GPCR targets with experimental data. An ex-

ample output involving the ligand, prenalterol, is shown in Figure 6,

where all GPCRs that bind with the ligand are listed at the bottom

of the page.

Although the GPCR-ligand association information can be

retrieved from the GPCR- and ligand-based searches, GLASS pro-

vides a third GPCR-ligand-based search option if the respective

GLASS ID of the interaction is known. In the above example, the

GLASS ID of the human b2 adrenergic receptor and prenalterol as-

sociation is ‘8792’. By searching on ‘8792’, the users will be brought

to a page containing GPCR and ligand information, as well as ex-

perimental binding affinity data. In this example, the free energy of

binding was reported to be 9.76 kcal/mol from the reference with

the PubMed ID 24063433.

In addition to the ligand-, GPCR- and ligand-GPCR-based

searching options, GLASS provides a target-based search for users

who wish to locate a particular ligand by either chemical similarity

or match of substructure (Fig. 7). Using the JSME chemical editor,

the user can manually draw a ligand of interest or import a MOL or

SDF file. Substructure search queries should be for the ligands of suf-

ficient chemical complexity, as it would otherwise match too many

ligands and result in an unreasonably long search. Searching by

chemical similarity, there are options to select for a percentage cut-

off. Results are returned with respective ligands and 2D chemical

structure images; Tanimoto coefficients are also provided for simi-

larity searches. All ligands found can be downloaded in SDF file for-

mat. An example to search homologies of morphine is illustrated in

Figure 7.

3.2.2 Browsing GLASS

A comprehensive list of GPCRs and ligands from GLASS is provided

on the home page to enable browsing of all entries in bulk.

Fig. 5. Illustration of the output of GPCR-based search from GLASS. This ex-

ample is from the human b2 adrenergic receptor, where ligands associated

with the receptor are listed at the bottom of the page. The 3D structure shown

was from the PDB (ID: 2RH1) solved by Cherezov et al. (2007)

Fig 6. Illustration of the output page for the ligand-based search on GLASS.

The ligand shown is prenalterol, one of the associationed ligands for the

human b2 adrenergic receptor in Figure 5. GPCRs bound with prenalterol are

listed at the bottom of the page

3040 W.K.B.Chan et al.
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Additionally, the user can also browse all GPCRs as sorted by their

respective families as designated by UniProt (Magrane and

Consortium, 2011). According to this schema, the rhodopsin-like

family GPCR entries are further divided into the level of sub-families

due to the high volume of entries, while the rest of the families re-

main in one level.

3.2.3 Downloading GLASS

Tables of GPCR, GPCR-ligand and ligand data are all made avail-

able for download in TSV file format. A zipped SDF file of all

GLASS ligands in 3D format is available and ready for use in mo-

lecular docking experiments; physicochemical properties and mo-

lecular descriptors are included within the property tags for the

user’s convenience.

4 Summary

We have developed a new database, GLASS, which encompasses a

wide breadth of GPCR-related pharmacological data, gathered from

a multitude of data sources and PubMed literature mining. GLASS

contains over ten times more ligand and GPCR-ligand interaction

data than the leading databases, which makes GLASS the most com-

prehensive and up-to-date GPCR-ligand association repository in

the field. It is however the novel sets of data collection and feature

setting, rather than the sheer amount of data, which makes GLASS

database unique.

First, the data extraction procedure was augmented with a novel

text-mining pipeline, which makes it possible for automated

database updating. More importantly, careful manual crosschecking

of the existing datasets with the text-mining data increase both the

accuracy and the coverage of the GPCR-ligand data collections.

Nearly 20% of ligand association data are collected from the litera-

ture mining after manual literature validation following the auto-

mated text mining process. We have noticed that many of the

bioactive ligand associations have been described in literature but

were missed in most of the pharmacological databases. To address

the issue, users are given the option to browse through text-mining

results in order to discover missed GPCR-ligand interactions. This

will prove invaluable in cases where the missing data yields bioactive

ligands for a certain GPCR of interest that have chemical structures

distinct from those currently in databases.

Second, the current structure of GLASS database has been made

to retain the majority of GPCR-ligand pharmacological data after

some definitive filters to rule out false positives; this gives users

options to choose proper cutoff values for certain experimental par-

ameters, such as binding constants. This will avoid any subjective

pre-cutoffs that limit user’s flexibility. Certain GPCR-ligand data-

bases, such as GLIDA (Okuno et al., 2008), only give a list of lig-

ands with biological activities as opposed to experimental

parameters. For example, a ligand could be designated as an agonist

for a GPCR, but we are left unaware of how it came to be as such.

The pre-cutoff setting makes it difficult to customize ligand datasets

by experimental values for analysis. GLASS database was designed

to ensure all of its extracted data available for user manipulation.

The presence of this option means that analyses can be performed

on individual GPCRs to elucidate their ligand preferences based on

various cutoff values.

One of the focuses of GLASS is to provide references to various

experimental and computational virtual screening studies. For

instance, an important approach to GPCR virtual screening is to col-

lect ligand profiles from homologous ligand-GPCR interactions

(Zhou and Skolnick, 2012), where the completeness of the ligand-

GPCR associations in GLASS will be essential to increase the

sensitivity and recognition power of the ligand profiles. With its

comprehensive coverage of datasets and consistent updates of data,

we expect that GLASS become an important primary GPCR re-

source and impart its usefulness in many other biomedical studies,

including in silico GPCR drug discovery, GPCR de-orphanization

and functional annotation.
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