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ABSTRACT

Motivation: Protein domains are subunits that can fold and evolve

independently. Identification of domain boundary locations is often

the first step in protein folding and function annotations. Most of the

current methods deduce domain boundaries by sequence-based ana-

lysis, which has low accuracy. There is no efficient method for pre-

dicting discontinuous domains that consist of segments from

separated sequence regions. As template-based methods are most

efficient for protein 3D structure modeling, combining multiple thread-

ing alignment information should increase the accuracy and reliability

of computational domain predictions.

Result: We developed a new protein domain predictor, ThreaDom,

which deduces domain boundary locations based on multiple thread-

ing alignments. The core of the method development is the derivation

of a domain conservation score that combines information from tem-

plate domain structures and terminal and internal alignment gaps.

Tested on 630 non-redundant sequences, without using homologous

templates, ThreaDom generates correct single- and multi-domain

classifications in 81% of cases, where 78% have the domain linker

assigned within �20 residues. In a second test on 486 proteins with

discontinuous domains, ThreaDom achieves an average precision

84% and recall 65% in domain boundary prediction. Finally,

ThreaDom was examined on 56 targets from CASP8 and had a

domain overlap rate 73, 87 and 85% with the target for Free

Modeling, Hard multiple-domain and discontinuous domain proteins,

respectively, which are significantly higher than most domain pre-

dictors in the CASP8. Similar results were achieved on the targets

from the most recently CASP9 and CASP10 experiments.

Availability: http://zhanglab.ccmb.med.umich.edu/ThreaDom/.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein molecules are composed of domains that fold, function

and evolve autonomously. The definition of protein domains is,

however, not absolute. Recent studies have shown that protein

domains within the same family or superfamily can vary signifi-

cantly in both structure and function (Dessailly et al., 2010;

Reeves et al., 2006). Nevertheless, correct assignment of bound-

aries of the protein domains is essential for the efficient elucida-

tions of protein function and evolutionary mechanisms.

The most accurate characterization of protein domains is

through the analysis of the 3D structures. However, the

experimental determination of protein structures is often time

and manpower expensive and some proteins are even impossible

to solve currently. The computational domain prediction from

the amino acid sequence is, therefore, highly demanded. A var-

iety of methods have been recently developed in this regard that

can be roughly categorized into three groups: statistical and ma-

chine-learning based, homology-based and 3D model-based

methods.
The statistical and machine-learning-based methods are prob-

ably the most frequently used approaches to protein domain

predictions, with examples including DGS (Wheelan et al.,

2000), DomCut (Suyama and Ohara, 2003), Armadillo (Dumon-

tier et al., 2005), PPRODO (Sim et al., 2005), DOMPro (Cheng

et al., 2006), DomNet (Yoo et al., 2008), DROP (Ebina et al.,

2011), DOBO (Eickholt et al., 2011), PRODOM (Servant et al.,

2002), ADDA (Heger et al., 2005) and EVEREST (Portugaly

et al., 2006). In the DGS, DomCut and Armadillo programs,

the statistical regularities seen in the Protein Data Bank (PDB)

structures, including domain size distribution and residue pro-

pensities, are used to deduce the domain linker and boundary

predictions. In PRODOM, ADDA and EVEREST, the domain

boundaries are derived by large-scale sequence comparisons fol-

lowed by clustering analyses. In the rest examples (PPRODO,

DOMPro, DomNet, DROP and DOBO), the residue-based stat-

istical features, together with the position-specific scoring matrix

from PSI-BLAST search, are trained by machine-learning tech-

niques, including neural network, support vector machine and

random forest classifiers. These methods deduce boundary infor-

mation from sequence only, which can in principle be applied to

any proteins. But the overall accuracy is low compared with the

homology-based approaches.
In the homology-based methods, e.g. Pfam (Finn et al., 2010),

CHOP (Liu and Rost, 2004) and FIEFDOM (Bondugula et al.,

2009), target sequences are searched through known protein

structure or family libraries by hidden Markov model (HMM)

or PSI-BLAST programs. The domain boundary information is

then obtained by mapping the domain information from the

homologous templates or families following the sequence align-

ments. The homology-based methods can have a high accuracy

of predictions when close templates are identified, but the accur-

acy decreases sharply when the sequence identity of target and

template is low (e.g.530%).
In the 3D model-based methods, e.g. SnapDRAGON (George

and Heringa, 2002), RosettaDom (Kim et al., 2005) and

OPUS-DOM (Wu et al., 2009), the authors first construct ter-

tiary structure models of the target by either ab initio folding or

knowledge-based coarse-grained modeling simulations. Domain*To whom correspondence should be addressed.
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parser tools are then used to assign the domain information on

the predicted 3D models. The accuracy of domain assignments

relies on the quality of the tertiary models, which usually de-

creases with the size of the target proteins because of the limited

ability of ab initio folding simulations (Zhang, 2008).

Having in mind the improved power of the template-based

protein structure predictions and the increasing size of PDB,

we propose a new algorithm ThreaDom based on multiple

threading algorithms, which aims to significantly improve the

reliability of domain predictions in the category of distantly

homologous protein targets. Although the threading-based algo-

rithms have been successfully used in the CASP experiments for

modeling multiple-domain protein structures where the domain

boundaries are usually decided by human-intervened views and

interpretations of multiple-threading alignment profiles (Zhang,

2007, 2009), this is the first time to integrate the multiple thread-

ing algorithms into an automated pipeline for domain boundary

determinations. The key to the algorithm is the development of a

sensitive domain boundary profile that can calibrate composite

structural and sequence alignment information from the multiple

threading templates for precise domain assignment. The method

will be systematically benchmarked on large-scale proteins, to

examine the weaknesses and strengths in comparison with

other widely used domain prediction approaches.

2 METHODS

2.1 Data sets

We collect a non-redundant protein set from PISCES (Wang and

Dunbrack, 2003), with the sequence identity cut-off at 25%, resolution

53.0 Å and R-factor51.0. The domain definitions of these proteins are

taken from CATH 3.4 (Orengo et al., 1997). If the template protein does

not exist in the CATH, the domain structure is defined by DomainParser

(Xu et al., 2000).

All proteins with a chain length580 residues or domain length540

residues are removed, which results in a protein set containing 715 multi-

domain and 2524 single-domain chains. The 715 multi-domain proteins

are divided into training and testing sets, including 400 and 315 chains,

respectively. The 2524 single-domain chains are randomly divided into

two sets, paired with multi-domain proteins in the training and testing

sets.

Based on the significance of threading alignments, the protein chains

are categorized into ‘Easy’, ‘Medium’ and ‘Hard’ proteins (see later in the

text). Thus, our training set includes 331� 2 ‘Easy’, 46� 2 ‘Medium’ and

23� 2 ‘Hard’ protein sequences, and the testing set contains 261� 2

‘Easy’, 36� 2 ‘Medium’ and 18� 2 ‘Hard’ non-redundant sequences,

where ‘�2’ refers to two sets of single and multiple-domain proteins.

2.2 Multiple template identification by LOMETS

In ThreaDom, LOMETS (Wu and Zhang, 2007) will be used to thread

the target sequences through the PDB for structural template identifica-

tions. LOMETS contains eight threading programs of complementary

approaches, including HHSEARCH (Söding, 2005), MUSTER (Wu

and Zhang, 2008), PROSPECT2 (Xu and Xu, 2000), PPA-I (Wu et al.,

2007), SAM-T02 (Karplus et al., 1998), SPARKS2 and SP3 (Zhou and

Zhou, 2005). In HHSEARCH, we implemented two versions of global

and local HMMs, HHSEARCH-1 and HHSEARCH-2. These eight

threading programs are displayed in Figure 1 as the LOMETS-based

threading server layer.

Three independent template libraries are used. First, MUSTER, PPI-1,

SAM-T02 and PROSPECT2 use an internal I-TASSER template library

with sequence identity570% from http://zhanglab.ccmb.med.umich.edu/

library/; SPARKS2 and SP3 use another internal library of sequence

identity540%; HHSEARCH uses the library downloaded from ftp://

ftp.tuebingen.mpg.de/pub/protevo/HHsearch/databases, which has also

a 70% sequence identity cut-off. The domain boundaries for all templates

are pre-calculated based on CATH3.4 or DomainParser. As residues in

the template structures were re-ordered in threading libraries, a map-

adapter is established to map all the template libraries into the original

entries in the PDB library so that CATH domain definitions can be

exploited.

For each LOMETS program, a Z-score cut-off (Z0) is assigned, based

on the threading results data of 1190 independent training proteins, so

that the well-defined alignments with an average TM-score40.6 can be

achieved when Z-score4Z0. Here, Z-score is a measure of the signifi-

cance of the target-template alignment, defined as the score difference to

the mean in the unit of standard deviation. A protein target is categorized

as ‘Easy’ if each of the LOMETS threading programs have at least one

template with Z-score4Z0; it is a ‘Hard’ target if there is no template hit

with Z-score4Z0 by any programs. Otherwise, it is assigned as a

‘Medium’ target.

2.3 Outline of ThreaDom procedure

Domain predictions in ThreaDom are based on two assumptions: (i)

homologous proteins have similar domain structures; (ii) residues in the

core regions of domain structures are evolutionally more conserved than

that in the boundary (or linker) regions between domains. Following the

assumptions, the ThreaDom procedure contains three steps as displayed

in Figure 1.

(i) Target sequences are threaded through the PDB by eight

LOMETS programs, and a multiple sequence alignment is con-

structed based on the target sequence (with external inserts/gaps

shaved).

Fig. 1. Architecture of ThreaDom. It consists of a library layer, a meta-

server threading layer and a domain decision layer from the bottom.

Eight threading programs in the meta-server layer access three structure

libraries in the library layer to provide alignments for the domain decision

layer. Threading Library Map-Adapter calls libraries in the library layer

and provides a unified order map. In the decision layer, data flow from

A to F
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(ii) A domain conservation score (DCS) is calculated for each resi-

due position based on the LOMETS multiple sequence align-

ments, which counts for the balance of conservation and gap

penalty scores.

(iii) Domain boundaries are assigned based on the DCS profile using

a target-specific scoring cut-off.

2.4 Domain conservation score

In ThreaDom, the domains of the target sequence are specified by the

location and size of linker regions between two domains (e.g. A and B):

L ¼ fijstartðLÞ5i5endðLÞg ð1Þ

where i is the residue number, start(L) is the residue position of the last

residue in domain A along the sequence, end (L) is the position of the first

residue in domain B and Start(L)5end (L). In ThreaDom, we consider two

contributions of template domain boundary structure and target-template

alignment gaps, which are used to decide the location and size of the

domain linkers of the target sequences.

2.4.1 Template domain linker score ThreaDom considers T tem-

plate alignments obtained by LOMETS, where Tgood is the number of

templates with a Z-score�Z0, and Tbad is that with a Z-score5Z0.

Following CATH (or DomainParser) domain definition, the jth template

has a domain split specified by the linker structure Lj
T:

LTðjÞ ¼ fijstart
ðLÞ
T ðjÞ � d5i5end

ðLÞ
T ðjÞ þ dg ð2Þ

where start
ðLÞ
T ðjÞ and end

ðLÞ
T ðjÞ are the starting and ending positions of the

linkers on jth template. Considering the alignment error that may result

in linker shift, we introduce a distance allowance d to increase the size of

template linkers.

For residue i, the template domain linker score from the T template

alignments is calculated by

STðiÞ ¼
XTgood

j¼1

w1 � aijþ
XTbad

j¼1

w2 � aij ð3Þ

where w1 and w2 are the weight parameters on ‘good’ or ‘bad’ templates.

aij counts for whether the ith residue on the target is aligned with the

linker regions of jth template, i.e.

aij ¼
m i 2 LTðjÞ
0 i =2LTðjÞ

�
ð4Þ

Here, m counts for the confidence of domain assignment of template

structures. In our benchmark test, there is an agreement between

DomainParser and CATH for �80% proteins. We set m¼ 0.8 if the

template domain is assigned by DomainParser, and m¼ 1.0 if by

CATH, as the latter is assisted by human intervention and of a higher

accuracy in domain assignment.

2.4.2 Gap penalty score ThreaDom specifies two types of gap penal-

ties from threading alignments: terminal gap Gterm and internal gap Gint.

The terminal gaps on jth template are defined by

GtermðjÞ ¼ fijjN � d5i5jN þ d or jC � d5i5jC þ dg ð5Þ

where jN and jC are the N- and C-terminal positions of the first and last

aligned residues on jth template. The internal gap is defined by

GintðjÞ ¼ fijjm � d5i5jm þ dg ð6Þ

where jm ¼ startGðjÞ � endGðjÞ½ �=2 denotes the middle point of the internal

gaps, and startG(j) and endG(j) are the starting and ending locations of the

gaps. To rule out alignment noise, we only consider the gaps with a size

longer than l, i.e. jstartGðjÞ � endGðjÞj4l.

The total gap penalty score for the residue i is calculated by:

SGðiÞ ¼
XT
j¼1

w3 � bij þ w4 � cij
� �

ð7Þ

where w3 and w4 are the weight parameters; bij and cij are the binary

values representing whether the ith residue locates in the gap regions of

the jth template alignment:

bij ¼
1 i 2 GtermðjÞ
0 i =2GtermðjÞ

�
and cij ¼

1 i 2 GintðjÞ
0 i =2GintðjÞ

�
ð8Þ

2.4.3 Domain conservation score The template domain linker score

and gap penalty score indicate the degree of variations of multiple thread-

ing alignments at the position i. Accordingly, the domain conservation

score, S(i), is calculated by

SðiÞ ¼ 1�
1

T
STðiÞ þ SGðiÞ½ � ð9Þ

where 15i5N, N is the length of the target sequence.

To reduce noise in the DCS assignment that may result in artificial

domains with very short length, we smooth the domain conservation

score using a 19-residue window:

S0ðiÞ ¼
1

19

Xiþ9
k¼i�9

SðkÞ ð10Þ

Meanwhile, S(k) is set to 0 if S(k)50. Thus, the smoothed domain con-

servation score S’(i) has a value in (0,1).

2.4.4 Deciding domain linkers by DCS profiles A putative domain

linker L(k) in ThreaDom is an aggregation of the continuous residues that

have the conservation score below a certain cut-off Sc, i.e.

LðkÞ ¼ fijS0ðiÞ5Sc and L
ðkÞ
start5i5L

ðkÞ
endg ð11Þ

where k ¼ 1, � � � , n represents the number of linkers. The middle point of

the linker, L
ðkÞ
mid ¼ L

ðkÞ
start þ L

ðkÞ
end

� �
=2, is noted as the predicted boundary to

the linker L(k) in the ThreaDom program.

As the majority of protein domains in the PDB have a length longer

than 40 residues, we consider two length-based domain filters. First, if the

distance from L
ðkÞ
mid to the terminal of sequence is540, the L(k) is removed

from the putative linker list (i.e. set L(k)
¼ 0). Second, if the distance

between two neighboring linkers is too close, i.e. L
ðkþ1Þ
mid � Lk

mid540, the

linkers will be merged into one linker. The boundary position of the

merged linkers is calculated by

L
0 ðkÞ
mid ¼

L
ðkÞ
mid ��L

ðkÞ
mid þ L

ðkþ1Þ
mid ��L

ðkþ1Þ
mid

�L
ðkÞ
mid þ�L

ðkþ1Þ
mid

ð12Þ

where �L
ðkÞ
mid ¼ Sc � S0ðL

ðkÞ
midÞ is associated with the confidence of the

linker assignment on LðkÞmid. Based on Equation 12, if the linkers have

similar confidence, i.e. �L
ðkÞ
mid 	 �L

ðkþ1Þ
mid , the boundary position of

the merged linker is at the middle of the two linkers,

L
0 ðkÞ
mid 	 ðL

ðkÞ
mid þ L

ðkþ1Þ
mid Þ=2. Otherwise, the boundary of the merged linkers

will be biased to the position of the linker with a higher confidence score.

The final continuous domain assignment in the ThreaDom is repre-

sented in the form of ð1� L
ð1Þ
midÞðL

ð1Þ
mid þ 1� L

ð1Þ
midÞ � � � ðL

ðn�1Þ
mid þ 1�NÞ,

and the residue range in each pair of parenthesis represents an individual

domain. One example of the ThreaDom protein domain prediction is

given in Figure 2, where four individual domains are separated by

three linkers L(1), L(2) and L(3), with the cutoff Sc¼ 0.60.

Equations 1–12 have eight free parameters (w1, w2, w3, w4, d, l, T and

Sc), which will be trained on our training proteins of various classes

(see later in the text).
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2.5 Strategy for detecting discontinuous domains

The term discontinuous domain refers to a domain that contains two or

more segments from separated regions of target sequence. ThreaDom

detects discontinuous domains based on the DCS profile and the pre-

defined domain boundaries of the threading templates, which contains

three steps:

Step I: Detecting discontinuous domain sequence. A target is considered

to have discontinuous domains if it has430% templates that have dis-

continuous domain structure in the LOMETS template collection.

Step II: Clustering the discontinuous domain templates. The discontinu-

ous domain templates are clustered based on their domain boundary

locations and domain assignments. The discontinuous templates are

clustered into one category if they have the same number of domains

with same domain segments number and similar boundaries, where

‘similar boundary’ means that the difference in boundary positions is

within �5 residues after structure alignment of the two templates.

Step III: Boundary refinement and discontinuous domain substitution.

After clustering, the DCS-based domain prediction and the domain

structure in the first template cluster are combined, i.e. if the domain

boundary difference between the DCS prediction and the first template

cluster is within �20 residues, the separated domains in the DCS pre-

diction will be merged into a single domain following the assignment in

the first template cluster. Meanwhile, if the number of domains in the

DCS prediction is43 but less than that in the first cluster, we substitute

the DCS prediction with the domain information of the first cluster

when the domain boundaries in 450% of templates are consistent

(i.e. differences are �20 residues).

2.6 Evaluation criteria

We evaluate the ability of ThreaDom on both the domain number and

the domain boundary predictions. The domain number prediction is as-

sessed by counting the accuracy of single- or multi-domain protein clas-

sifications. We use specificity, sensitivity and Matthew’s correlation

coefficient (MCC) to assess the domain number prediction:

Specificity ¼
TP

TPþ FP
ð13Þ

Sensitivity ¼
TP

TPþ FN
ð14Þ

MCC ¼
ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðFPþ TNÞðTNþ FNÞ
p ð15Þ

where TP, FP, TN and FN are true positive, false positive, true negative

and false negative rates of the classifications, respectively.

To assess the quality of domain boundary predictions, we calculate

precision and recall rates, the normalized domain overlap (NDO)-score

(Tai et al., 2005) and the domain boundary distance (DBD) score (Tress

et al., 2007). The precision has a similar definition to specificity as defined

in Equation 13, but boundary prediction is designated as ‘TP’ if it is

within �20 residues of the true boundary; otherwise it is an ‘FP’ predic-

tion. Recall is similar to the sensitivity in Equation 14, which represents

the fraction of the target boundaries that are correctly retrieved in the

domain predictions. The NDO-score is defined as the normalized overlap

rate of all predicted domain and linker regions with the true assignments

of the target structure. The DBD-score measures the distance of the pre-

dicted boundaries from the true target domain boundaries.

To avoid the contamination of homologous templates that are easy to

predict in ThreaDom, we exclude all the templates that have a sequence

identity430% to the target protein or that are detectable by PSI-BLAST

with an E-value50.05. As a control, we implemented five publicly avail-

able domain predictors, including FIEFDom (Bondugula et al., 2009),

Pfam (Finn et al., 2010), DomPro (Cheng et al., 2006), DROP (Ebina

et al., 2011) and PPRODO (Sim et al., 2005), which represent different

type of homology- and machine-learning-based methods. These methods

are run on the same test set of proteins.

2.7 Parameter training

There are eight free parameters in the ThreaDom scoring Equations

(2–11), including four weight parameters (w1, w2, w3 and w4), the linker

shift d, the length cut-off of internal gaps l, the number of threading

templates T and the DCS cut-off Sc. We trained the parameters by max-

imizing the precision, recall and NDO scores on the 800 training proteins

(400 single-domain þ 400 multi-domain proteins, see Section 2.1). The

parameters are tuned separately for Easy andMedium/Hard proteins. To

increase the efficiency, we projected the parameter values on an 8D

system and enumerate various values on the lattices. Parameter values

corresponding to the optimal results were selected with results summar-

ized in Table 1. For the 331� 2 ‘Easy’ targets in our training set, the

optimal NDO, precision and recall scores are 0.919, 0.836 and 0.77, re-

spectively, and those for the 69� 2 ‘Medium/Hard’ targets are 0.821,

0.476 and 0.32, respectively.

3 RESULTS AND DISCUSSION

3.1 Domain classification prediction

A sequence is considered to be a multi-domain protein if it in-

cludes one or more domain linkers. In the test on the 315� 2

non-homologous proteins that are also non-homologous to the

training protein set, ThreaDom correctly classifies proteins as

being either single- or multi-domain proteins in 81% of the

cases. For the ‘Easy’ protein set, the accuracy is 84.7%, and

for ‘Medium/Hard’ test set, the accuracy is 68.5%.
Table 2 shows a summary of ThreaDom performance in con-

trol with the other five methods on the single-domain or multi-

domain classification. For all the three categories of ‘All’, ‘Easy’

and ‘Medium/Hard’, ThreaDom produces the highest MCC

among the five predictors. The MCC values are 54, 60 and

41%, respectively, higher than that by the second best predictor

FIEFDom, which is a homologous method-based on PSI-

BLAST search. Pfam, a standard HMM-based domain

Fig. 2. An illustration of the domain decision in ThreaDom based on the

domain conservation score profile. Four individual domains are sepa-

rated by three linkers defined by the valleys of the DCS distribution.

The vertical dotted lines indicate the start and end locations of each

putative linker. The vertical solid lines denote the predicted boundary

at the middle of the linkers (L
ð1Þ
mid, L

ð2Þ
mid and L

ð3Þ
mid)
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assignment program, has a slightly lower average MCC than

FIEFDom.

Interestingly, the two machine-learning-based methods,

DomPro and PPRODO, have top specificity or sensitive values

in some categories, but they have a low MCC because of unba-

lanced classifications. For example, in the ‘Easy’ set, PPRODO

has a sensitivity of 100% for multi-domain classification but only

1.1% for single-domain, whereas the corresponding specificity

values were 50.3 and 100%, respectively. These data imply that

PPRODO classifies almost all sequences as multi-domain pro-

tein, which, therefore, leads to a low MCC value of 0.076.

Similarly, DomPro tends to classify most chains as being

single-domain chains that also results in a modest MCC value,

although it has a better balance than PPRODO. In other words,

DomPro is an underpredicting method for multiple-domain,
whereas PPRODO is overpredicting. DROP, another machine-

learning method, has a negative MCC in all three categories of

targets because of the low assignment accuracy.

3.2 Domain boundary prediction

For the proteins in the ‘All’, ‘Easy’ and ‘Medium/Hard’ sets, the

domain boundary predictions by ThreaDom has the NDO-

scores of 0.893, 0.905 and 0.832, DBD-scores of 0.861, 0.887
and 0.737, precisions of 0.784, 0.814 and 0.562 and recalls of

0.670, 0.708 and 0.425, respectively. Figure 3 presents the

ThreaDom prediction results together with that by other five
control methods, where the y-axis is the value of NDO, DBD,

boundary precision and recall scores, and x-axis denotes the

categories of protein sets in ‘All’, ‘Easy’ or ‘Medium/Hard’.
For proteins in all the three categories, ThreaDom achieves the

highest value in NDO-score, DBD-score and boundary preci-

sion. ThreaDom also has the highest score in boundary recall

for ‘All’ and ‘Easy’ categories, and the second highest score in
boundary recall for the ‘Medium/Hard’ proteins.

As shown in Figure 3D, PPRODO has a slightly higher recall
value than ThreaDom for the ‘Medium/Hard’ targets. This is

partly because of the overprediction of PPRODO that predicts

most of the single-domain proteins as multi-domain and has,
therefore, on average more boundary linkers assigned. This

leads to a worse precision value (26.7%) in comparison with

that by ThreaDom (56.2%). Because of the unbalanced recall
and precision, PPRODO has overall a poor performance when

assessed by the NDO- and DBD-scores (Fig. 3A and B).
Different methods have different sensitivities on the category

of protein targets. As shown in Figure 3, the predictions by the

Table 2. Single- or multi-domain classifications on CATH domains

Type Predictor MCC Single-domain Multi-domain

Spec. Sens. Spec. Sens.

All ThreaDom 0.682 0.800 0.902 0.887 0.775

FIEFDom 0.443 0.724 0.683 0.700 0.740

Pfam 0.378 0.645 0.813 0.747 0.552

DROP �0.019 0.491 0.517 0.490 0.463

DomPro 0.287 0.571 0.917 0.790 0.311

PPRODO 0.076 0.800 0.025 0.505 0.994

Easy ThreaDom 0.734 0.837 0.908 0.900 0.824

FIEFDom 0.458 0.768 0.648 0.695 0.805

Pfam 0.420 0.676 0.793 0.750 0.621

DROP �0.019 0.490 0.479 0.491 0.502

DomPro 0.304 0.579 0.912 0.793 0.337

PPRODO 0.076 1.000 0.011 0.503 1.000

Medium/Hard ThreaDom 0.432 0.653 0.870 0.806 0.537

FIEFDom 0.307 0.597 0.852 0.742 0.426

Pfam 0.178 0.538 0.907 0.706 0.222

DROP �0.020 0.494 0.704 0.484 0.278

DomPro 0.199 0.537 0.944 0.769 0.185

PPRODO 0.113 0.714 0.093 0.515 0.963

Note: Bold values denote the best performance in each category.

MCC, Matthew’s correlation coefficient; Spec., specificity; Sens., sensitivity.

Table 1. The optimized parameters in ThreaDom

Parameters Easy Medium/

Hard

Weight of good templates (w1) 2.0 2.0

Weight of bad templates (w2) 0.6 0.5

Weight of terminal gaps (w3) 0.8 1.4

Weight of internal gaps (w4) 0.1 0.5

Shift of linkers or gaps (d) 12 10

Minimum length of internal gaps (l) 15 15

Number of used templates (T) 50 50

DCS cut-off (Sc) 0.6 0.76
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statistical and machine-learning-based methods (DomPro,

DROP and PPRODO) have similar performances in both

‘Easy’ and ‘Medium/Hard’ categories, as these predictions are

from sequence only. The HMM-based method, Pfam, also

does not show difference between Easy and Hard targets because

the domains in Pfam were retrieved from UniProt and ADDA

sequence clustering (Heger and Holm, 2003), which are not dir-

ectly associated with template structures in the PDB library.

However, the two template-based methods, ThreaDom and

FIEFDom, have an obvious difference between ‘Easy’ and

‘Medium/Hard’ proteins because of the different availability of

the template hits in the two category of proteins. Nevertheless,

ThreaDom identified much more accurate boundary predictions

than FIEFDom in both ‘Easy’ and ‘Medium/Hard’ categories.

Particularly in the ‘Medium/Hard’ protein set, the precision and

recall are three and five times higher than that in FIEFDom.

These improvements are mainly because of (i) the better identi-

fication of templates by LOMETS than that by PSI-BLAST or

HMM searches and (ii) the sensitive calibration of gaps and

alignments by the domain conservation score as designed by

ThreaDom. These advantages are essential for ThreaDom to

detect efficient domain structures for the weakly- or non-hom-

ologous proteins.
In general, for the ‘Easy’ proteins, there are a large number of

‘good’ templates with a high Z-score as detected by various

threading programs in ThreaDom. The consensus domain as-

signments of the template structures dominate the boundary pre-

dictions. For the ‘Medium/Hard’ targets, however, there are few

consensus ‘good’ templates, and the identification of consensus

terminal and internal alignment gaps becomes sensitive. This ex-

plains the reason that the weighting parameters of gap penalty

score (w3 and w4 in Equation 7) become larger for the ‘Medium/

Hard’ targets than that for the ‘Easy’ targets (Table 1). In

Supplementary Table S1 of Supplementary Materials, we sepa-

rated the contributions of template alignment and gap penalty

scores in ThreaDom. Although the gap penalty score tends to

make more important contribution for Hard targets, a combin-

ation of template and gap penalty scores outperforms individual

scores in all categories of targets. Thus, using a balanced con-

sensus of template domain assignment and the internal and ter-

minal gaps from multiple template alignments, the DCS system

helps erase the incident errors from single template alignment by

individual threading programs that are often less reliable.

In Figure 4, we show an illustrative example from the GTP

cyclohydrolase I (PDB ID: 1wurA), which is a hard target for

which none of the LOMETS threading program has a strong

template alignment with Z-score4Z0. The chain is classified as

a two-domain protein with boundary structure of (1–55) (56–

185) in the CATH database (Fig. 4E). In the control programs,

both FIEFDom and DROP incorrectly predicted the protein as a

single-domain chain, whereas PPRODO and DomPro correctly

assigned it as a multi-domain protein, but the assigned domain

boundary is 35 and 45 residues away from the CATH assign-

ment, respectively.
As shown in Figure 4D, the alignments among the 50 selected

threading templates are divergent and not conclusive: four tem-

plates at residue 46, two at residues 65, 69 and 102 and others

with domains almost evenly distributed along the sequence.

Similarly in Figure 4B and C, the internal and terminal alignment

gaps are nearly even-distributed. However, when we combine the

contributions from the domain and gap assignments as described

in Equations 9 and 10, the overall DCS profile has an obvious

valley around residue 60 (Fig. 4A), which is due to the weak but

consistent tendency of gap and domain assignments in the mul-

tiple threading alignments. Although there are two other valleys

in the N- and C-terminals, the locations are540 residues away

from the sequence ends and are ruled out by the default

length filter. Finally, the ThreaDom boundary prediction is

(1–60) (61–185), which shift by only five residues from the

CATH assignment. This example highlights the power of

ThreaDom in extracting correct domain information from dis-

tantly homologous threading alignments by combining multiple

domain and alignment gap/insertion information.

3.3 Domain prediction assessed by alternative domain

definitions

One concern of the aforementioned data analyses is on the pos-

sible bias of distinctive domain definitions of the training and test

proteins, as some methods (e.g. FIEFDom) were trained by do-

mains defined in the SCOP database (Murzin et al., 1995), but

the analyses are mainly on CATH definitions, which is what

ThreaDom was trained on. In Supplementary Table S2, we pre-

sent a quantitative analysis of the domain predictions on the 315

test protein pairs with the domains defined by SCOP1.75.

Similarly, if a protein cannot be seen in the SCOP library, a

definition from DomainParser is used instead. Although some

small variations are seen in specific score values, there is no

qualitative difference between Supplementary Table S2 and the

data shown in Table 1 and Figure 3. These results demonstrate

that the distinctive domain definitions of different databases

have no impact on the training and testing procedures of

domain predictions.

Fig. 3. Summary of domain boundary predictions by ThreaDom and the

control predictors. (A) Normalized Domain Overlap score; (B) Domain

Boundary Distance Score; (C) Precision of predicted boundaries; (D)

Recall of pre-defined boundaries
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3.4 Discontinuous domain prediction

Domain assignment for the proteins that have domains consist-

ing of segments from separated locations, called discontinuous

domains, is a long-standing unsolved problem. Despite the sig-

nificant importance of discontinuous domains in protein struc-

tural determination and function annotations, there is so far no

efficient method available for discontinuous domain prediction.

To test the ability of ThreaDom in discontinuous domain pre-

diction, we collect 486 non-homologous multi-domain proteins

from CATH 3.4 that include at least one domain with discon-

tinuous segments. These protein domains/segments have 440

residues with a pairwise sequence identity540%.
Overall, the automated ThreaDom procedure correctly identi-

fied 88.9% of the proteins as multi-domain proteins. For the

domain boundary prediction, the precision and recall are 83.9

and 64.5%, respectively, which are comparable with that for the

continuous domain protein samples (78.4 and 67.0% in precision

and recall), although we did not separately train ThreaDom on

the discontinuous domain proteins. The success rates of the pre-

dictions demonstrate that the segment assembly procedure has

efficiently combined the identified domain linkers from separated

positions into the discontinuous domains.
To illustrate the procedure, we present in Figure 5 an example

of a discontinuous domain protein from the aminopeptidase I in

Clostridium acetobutylicum (PDB ID: 2gljE). The domain struc-

ture in CATH assignment is (1–105;244–455) (106–243), where

the first domain D1 (1–105;244–455) contains two segments S11

(1–105) and S12 (244–455). The second domain D2 is a continu-

ous domain containing one segment S21 from 105 to 243. In

Figure 5, the domain boundary residues PRO105 and LYS244

are labeled in blue, ARG106 and GLY243 in magenta. P1 and P2
indicate the positions that split the sequence into the two

domains.
As most of the top templates by LOMETS have discontinuous

domain structure, ThreaDom classified the target as a discon-

tinuous domain protein. Following the multiple template align-

ments, the sequence is split into three segments of s1 (1–103), s2
(104–243) and s3 (244–455), which are marked in red, green and

yellow, respectively, in Figure 5, where P3 and P2 indicate the

splitting positions of the segments. These segments are highly

consistent with the first cluster of discontinuous-domain

templates that have a domain structure of (27–104;247–454)

(105–246). Therefore, the segments of s1 and s3 were merged in

a single domain with s2 assigned as the second domain. As a

result, there is only a two-residue shift in the domain boundary

by the ThreaDom prediction compared with the CATH assign-

ment in this example.

3.5 Benchmark on CASP targets

As publicly available domain predictors are limited, to have a

more extensive benchmark with the state-of-the-art methods, we

test ThreaDom on the protein targets in CASP8 (Ezkurdia et al.,

2009), which is the last community-wide blind experiment on

protein domain prediction (DP). The DP section in CASP8 con-

tains seven multi-domain Free Modeling (FM) targets, 29 Multi-

Domain Hard (MD-Hard) targets and 20 DisContinuous

Domain (DCD) targets. To mimic the CASP procedure, all tem-

plate proteins, which were solved after the CASP8 experiment,

were excluded from the LOMETS threading library when imple-

menting ThreaDom.

In Figure 6, we present the average NDO-score of ThreaDom

predictions in the three categories, in control with the seven

severs in the CASP8 DP section, which submitted predictions

for all the targets (five other servers, which submitted only partial

targets, were not shown in the figure). Overall, ThreaDom has an

average NDO-score of 0.738, 0.868 and 0.854 for the FM, MD-

Hard and DCD targets, respectively. For the entire set of 56

targets, the average NDO-score is 0.847, which is higher than

all the predictors in the CASP8 experiment.
In Figure 7, we present three typical examples of ThreaDom

predictions for the CASP8 targets. First, T0496 and T0397 in

Figure 7A and B have the domain boundary defined as (4–123)

(124–178) and (1–82) (83–150), respectively, based on the experi-

mental structures. Both targets are FM targets that have no ob-

vious template hit by LOMETS. ThreaDom combined the

Fig. 5. Illustration of ThreaDom on discontinuous domain prediction for

the aminopeptidase I protein (PDB ID: 2gljE). The segments assigned by

ThreaDom, s1 (1–103), s2 (104–243) and s3 (244–455), are marked in red,

green and yellow, respectively. The separated segments (s1 and s2) are

merged into a single domain following the clusters of the discontinuous

domain templates. P1 and P2 denote the domain boundary position ac-

cording to CATH 3.4, and P2 and P3 are that predicted by ThreaDom

Fig. 4. An illustrative example of ThreaDom prediction on ‘Hard’ target

from the GTP cyclohydrolase I (PDB ID: 1wurA). (A) DCS score distri-

bution. (B–D) Counts of templates with terminal gap, internal gap and

template domain assignment along the sequence in the total 50 selected

templates. (E) X-ray structure of the target protein with CATH and

ThreaDom domain boundaries labeled
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consensus of template alignments and gap penalty scores, which

generated a domain prediction as (1–113) (114–178) and (1–75)

(76–150) for the two targets; these correspond to NDO-scores of

0.889 and 0.907, respectively. All the predicted boundaries are

within �10 residues from the native domain definition.
T0490 in Figure 7C is also an FM target but with DCD struc-

ture, (5–87j143–227j319–368) (88–142j228–318). The first step of

the DCS scan split the target sequence into five segments, i.e. (1–

84) (85–142) (143–223) (224–319) (320–369), shown in red, green,

orange, cyan and yellow, respectively. After the template domain

structure clustering and boundary refinement, the first, third and

fifth segments are merged into the first domain and the rest into

the second domain. The final prediction (1–85j143–225j319–368)

(86–142j226–318) has a DNO-score of 0.97, which is close to the

native structure not only in the domain number and boundary

but also in the DCD components (Fig. 7C).

Domain prediction tests were not included in the most recent

CASP experiments (CASP9 and 10). The FM/Hard targets in the

experiments, however, represent a set of well-defined real-time

proteins free of homologous contaminations. In Supplementary

Table S3, we list the performance of ThreaDom, in control with

FIEFDom, Pfam, DROP, Dompro and PPRODO, on 46

FM/MD-Hard targets with 22 from CASP9 and 24 from

CASP10. Similarly, all protein templates solved after the CASP

experiments were excluded. To examine the impact of different

steps of procedures, we implemented two version of ThreaDom,

i.e. ThreaDom1 used the Domain Conservation score without

linker refinement and DCD detection procedures, whereas

ThreaDom2 is a complete ThreaDom implementation, including

both procedures.

As shown in Supplementary Table S3, ThreaDom2 obviously

outperforms ThreaDom1 in all criteria of precision, recall, DNO-

and DBD-scores, which demonstrates the importance of the re-

finement procedures. Overall, the two ThreaDom programs are

ranked as the top two methods in most of the assessments for the

CASP9 and CASP10 targets, except for that the DBD-score, and

the boundary recall of the ThreaDom programs are slightly

lower than that of a few other methods for the CASP9 targets.

3.6 Drawbacks of ThreaDom

ThreaDom is a threading-based method, and the quality of the

threading template alignments has a major impact on the per-

formance of the domain predictions. Generally, the success rate

for Easy targets with a strong hit is higher than that of Hard/

Medium targets. However, there are also cases that strong tem-

plates hits can result in incorrect domain assignments. The major

sources of errors in ThreaDom come from (i) inconsistent

domain order of homologous proteins; (ii) non-specific DCS

cut-offs; and (iii) unmatched sequence size between target and

templates.
Supplementary Figure S1 shows two examples of the incorrect

ThreaDom predictions because of inconsistent domain orders,

one from the Talin-1 (PDBID: 3dyjA) and one from the DNA

polymerase III subunit � (PDBID: 3d1gA). Target 3dyjA is a

two-domain protein with boundary at 164 according to CATH

(Supplementary Fig. S1A). LOMETS identified the top template

from 2� 0cA, which has the same architecture to the target but

with domains containing swapped segments (Szilagyi et al., 2012)

(Supplementary Fig. S1B); this results in an incorrect split (1–98)

(99–162) (163–241) (242–311) by ThreaDom (Supplementary

Fig. S1C). ThreaDom did not merge the separate segments, as

the fraction of hits on 2� 0cA is below the cut-off (30%) in this

example. Target 3d1gA consists of three domains: (1–123) (124–

247) (248–366) in CATH (Supplementary Fig. S1D). It has the

dominant template alignments from 2awaB with a high TM-

score to the target (Supplementary Fig. S1E). However, 2awaB

contains discontinuous domain structures (1–138j205–244) (139–

204j245–375) in CATH, which results in an incorrect domain

assignment (1–123j195–241) (124–194j242–366) following

threading mapping (Supplementary Fig. S1F), despite the fact

that the overall topology of the two proteins is close.
The domain linker regions in ThreaDom are decided by the

interplay of DCS profile and threshold cut-offs. To increase the

specificity, the DCS cutoff parameter has been trained in two sets

Fig. 7. Illustrative examples of domain prediction by ThreaDom on

CASP8 targets: (A) FM target T0496; (B) FM target T0397; (C) DCD

target T0490. The domain boundary from the native structures is labeled

by the cutting pars P1–P6 with the adjacent residues marked in blue and

magenta. The domain segments predicted by ThreaDom are marked in

different colors. In T0490, the neighboring segments are correctly merged

into two individual domains

Fig. 6. Average normalized domain overlap (NDO)-score of ThreaDom

predictions on the CASP8 domain prediction targets, in comparison with

the CASP8 servers that submitted prediction for all 56DP targets
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of Easy and Medium/Hard proteins. Nevertheless, a single cut-

off score might be still too general, which can result in over- or

underprediction of protein domains. Figure 8A is an example of

overprediction on 3-methyladenine DNA glycosylase I (PDBID:

2ofkA), which is a single-domain protein target. LOMETS con-

siders it as a Hard target, as no significant template was identi-

fied. Among the top 35 template hits, 19 are multiple-domain

proteins and 10 have the terminal gap near the residue 120. The

DCS profile has, therefore, an artificial valley lower than the

DCS threshold 0.76 for Hard/Medium target, which results in

an overprediction of (1–120) (121–182) for this target. If the DCS

threshold for Easy target (0.6) was taken, this artificial valley

could have been ignored.
Figure 8B is an example of underprediction because of the

inappropriate DCS cut-offs. This protein is from the � subunit

of the dissimilatory sulfite reductase (DsrC) (PDBID: 1sauA),

which is a two-domain Hard protein with domain assignment

as (1–44) (45–114) in CATH. Although the DCS profile has a

well-shaped valley at the correct domain boundary region,

ThreaDom mis-predicted it as a single-domain protein because

the N-terminal peak of DCS-score is lower than the threshold

cut-off 0.76, and the N-terminal domain boundary is, therefore,

overseen by ThreaDom. Again, if the DCS threshold for Easy

target (0.6) was taken, this valley could have been picked up. The

major reason for the low DCS peak is that the domain segment is

short, and nearly all the residues undergo a gap penalty because

they are too close to the two terminal and internal gaps. As

shown in Equations (2, 5 and 6), a distance allowance d (¼10/

12) was introduced to tolerate the alignment/gap uncertainty; but

it also introduces overpenalty for small domains. Generally,

ThreaDom is unable to predict small domains with size 520

residues. To enhance the sensitivity for small domains, a size-

dependent threshold cut-off might be needed for ThreaDom.
As ThreaDom derives domain information from templates,

insufficient coverage of template alignments is another source

of errors in ThreaDom prediction. This is particularly a problem

for big proteins, such as the armadillo and heat repeats and

�-propellers etc, when the solved template proteins cover only
part of the repeats. Figure 8C shows the DCS profile of an ex-
ample of such big proteins from the phosphatidylinositol

3-kinase catalytic subunit (PDBID: 1e8yA), which contains 841
residues with five domains assigned in CATH: (1–166) (168–302)
(303–488) (489–646) (647–841). There are overall 31 strong tem-

plate hits in LOMETS but most of them have a length 5550
residues as seen in Figure 8D. As a result, ThreaDom generates
a prediction of three domains (1–165) (166–303) (304–841) with

only the first two domains correctly assigned. We did notice that
there are weak valleys in the third and fourth domain boundary
linkers that are from the alignment shifts in the C-terminal re-

gion, but they are too weak to pick-up by the current DCS cut-
offs (0.6 for Easy proteins). This example highlights on one hand

the importance of fine-tuning DCS threshold parameters. On the
other hand, the domain prediction for big proteins may be fur-
ther improved by an iterative threading procedure, i.e. repeating

threading on the large single-domain sequences. In this example,
if we run LOMETS on the remaining big domain (304–841) re-
cursively, correct domain assignment can be obtained for the

third, fourth and fifth domains.

4 CONCLUSION

We developed a multiple-threading-based method, ThreaDom,
for protein domain boundary prediction. For a given target, it

first threads the sequence through the PDB library to identify
homologous and analogous templates. The profile distribution of
the DCS, which combines the composite information of template

domain structure and terminal/internal alignment gaps, is then
derived for identifying the domain boundary locations. If DCDs
are detected in the threading alignments, segments from sepa-

rated sequences will be merged into single domains under the
guide of the top template domain clusters and the target-template
alignments.

There are several distinct advantages of ThreaDom over the
current domain methods in literature. First, for the proteins of
homologous templates, the domain assignment from threading

alignments achieves a significantly higher accuracy than that
from ab initio statistical or machine-learning approaches
(Fig. 3). For proteins without close homologies, the LOMETS

threading programs often identify multiple alignments or
super-secondary structure segments from weakly homologous

templates, where the DCS profile can help pull out consensus
information between domain structure and alignment gaps. This
enables ThreaDom to generate useful domain information for

the targets that traditional homology-based approaches have dif-
ficulty with. It has also the advantage over the structural mod-
eling-based approaches, as no lengthy modeling simulations are

needed, and the approach has basically no limit on the size of
protein targets.
ThreaDom was tested on three independent sets of proteins.

For the first set of 315 single- and multi-domain protein pairs,
ThreaDom achieves MCCs of 0.734 and 0.432 in single-/multi-
domain classification compared with the CATH definition for

‘Easy’ and ‘Medium/Hard’ targets, respectively, which are sig-
nificantly higher than the control methods from homology and
machine-learning-based approaches. Similar results are obtained

when using an alternative domain definition from SCOP, which

Fig. 8. Inappropriate DCS thresholds and template sizes can result in

incorrect domain predictions. (A–C) DCS score for 2ofkA, 1sauA and

1e8yA, respectively; (D) histogram of template alignment coverages for

1e8yA
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demonstrates the reliability of the data analysis. Second, in the
test of 486 DCD proteins, ThreaDom has a similar domain as-
signment accuracy as that in continuous domains with a preci-
sion and recall 83.9 and 64.5%, respectively, in the domain

boundary prediction. Finally, when tested on the 56 CASP8 tar-
gets, ThreaDom has NDO-scores 0.761, 0.868 and 0.854 for the
FM, MD-Hard and DCD targets, respectively. The average

NDO-score for all targets is 0.847 that is the highest among all
CASP8 servers from different categories of homology, machine-
learning and ab initio folding-based approaches. Similar achieve-

ments are obtained for targets in the CASP9 and CASP10
experiments.
Overall, these data demonstrate a new promising approach

that fills up the gaps between the sequence-based and the hom-
ology-based methods, which can achieve reliable domain assign-
ments in all categories of template-based and template-free
modeling protein targets. Nevertheless, fine-tuning on DCS pro-

file cut-offs and iterative threading are needed for further im-
provement on small domain recognition and long sequence
covering, respectively.

Although ThreaDom uses template-based modeling approach,
it is much faster than the normal protein folding simulations, as
the threading procedure involves only the sequence alignment

search through a subset of the PDB library, which takes
�20min for one target protein. This speed makes it fairly feasible
to genome-wide applications, as a single threading scan for a
middle-size genome of 5000 genes takes51 day on a 100-core

cluster and that using multiple threading programs, such as
LOMETS, should take 51 week. An online server, as well as
the source code package of ThreaDom, is freely available for

academic users at http://zhanglab.ccmb.med.umich.edu/
ThreaDom/.
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