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ABSTRACT

Motivation: Protein structure similarity is often measured by root
mean squared deviation, global distance test score and template
modeling score (TM-score). However, the scores themselves cannot
provide information on how significant the structural similarity
is. Also, it lacks a quantitative relation between the scores and
conventional fold classifications. This article aims to answer two
questions: (i) what is the statistical significance of TM-score? (ii) What
is the probability of two proteins having the same fold given a specific
TM-score?
Results: We first made an all-to-all gapless structural match on 6684
non-homologous single-domain proteins in the PDB and found that
the TM-scores follow an extreme value distribution. The data allow us
to assign each TM-score a P-value that measures the chance of two
randomly selected proteins obtaining an equal or higher TM-score.
With a TM-score at 0.5, for instance, its P-value is 5.5×10−7, which
means we need to consider at least 1.8 million random protein pairs
to acquire a TM-score of no less than 0.5. Second, we examine the
posterior probability of the same fold proteins from three datasets
SCOP, CATH and the consensus of SCOP and CATH. It is found that
the posterior probability from different datasets has a similar rapid
phase transition around TM-score = 0.5. This finding indicates that
TM-score can be used as an approximate but quantitative criterion
for protein topology classification, i.e. protein pairs with a TM-score
>0.5 are mostly in the same fold while those with a TM-score <0.5
are mainly not in the same fold.
Contact: zhng@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein structure comparison is essential in almost every aspect
of modern structural biology, ranging from experimental protein
structure determination to computer-based protein folding and
structure prediction, from protein topology classification to
structure-based protein function annotation and from protein–ligand
docking to new compound screening and drug design (Kuntz, 1992;
Murzin et al., 1995; Orengo et al., 1997; Zhang, 2009). The most

∗To whom correspondence should be addressed.

commonly used means to compare protein structures is to calculate
the root mean squared deviation (RMSD) of all the equivalent atom
pairs after the optimal superposition of the two structures (Kabsch,
1978). However, because all atoms in the structures are equally
weighted in the calculation, one of the major drawbacks of RMSD
is that it becomes more sensitive to the local structure deviation than
to the global topology when the RMSD value is big. For example,
the RMSD of two protein structures can be high if the tails or some
loops have a different orientation even though the global topology
of the core part is the same; this cannot be distinguishable, based
on the RMSD value alone, from the case where two structures have
completely different topologies.

Aiming at developing protein topology-sensitive measures, Zemla
et al. proposed a global distance test score (GDT-score), which
counts the number of Cα pairs which have a distance <1, 2, 4 and 8 Å
after the optimal superposition (Zemla et al., 1999; Zemla, 2003).
Similarly, Siew et al. proposed MaxSub to identify the maximum
substructures which have Cα pairs <3.5 Å (Siew et al., 2000). These
measurements were extensively used in the community-wide CASP
and CAFASP experiments for assessing the modeling accuracy of
protein structure predictions (Fischer et al., 2003; Moult et al., 2007;
Zemla et al., 1999). However, the distance cutoffs in both GDT
and MaxSub scores are subjective and may need to be manually
tuned for different categories of modeling targets (Kopp et al.,
2007). Moreover, similar to RMSD, the magnitude of the GDT
and MaxSub scores for random structure pairs has a power-law
dependence with the protein length (Zhang and Skolnick, 2004),
which renders the absolute value of the scores less meaningful. Some
structural alignment-based scores, e.g. the MAMMOTH score (Ortiz
et al., 2002) and the Dali Z-score (Holm and Sander, 1995), have
also been often exploited to access the accuracy of protein structure
prediction. However, these measurements neglect the alignment
accuracy of the structure modeling. For example, a structure model
built on a template protein with a wrong alignment will have the
same structural alignment scores as the model on the same template
but with a correct alignment. These scores also have the drawback
that the similarity of related proteins strongly depends on their length
(Pascual-Garcia et al., 2010).

To address these issues, Zhang and Skolnick recently developed
a template modeling score (TM-score) (Zhang and Skolnick, 2004),
which counts all residue pairs using the Levitt–Gerstein weight
(Levitt and Gerstein, 1998) and therefore does not need discrete
distance cutoffs. Since the short distance in the Levitt–Gerstein
matrix is weighted stronger than the long distance, the TM-score
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is more sensitive to the global topology than local variations.
Additionally, because it adopts a protein size-dependent scale to
normalize the residue distances, the magnitude of the TM-score
for random protein pairs is protein size independent (Zhang and
Skolnick, 2004).

Despite the advantage and usefulness of RMSD, GDT-, MaxSub-
and TM-scores as quantitative measures of protein structure
similarities, the scores themselves cannot quantify the statistical
significance of the structure superposition/alignment, which is
essential in many of the statistical studies of protein structure
comparisons and alignment analyses (Levitt and Gerstein, 1998;
Sadreyev et al., 2009). Although MAMMOTH and Dali provide
P-value or Z-score as a measurement of the significance of sequence-
independent structural alignments, they do not appropriately count
for the similarities of given alignments that is important in the
assessment of protein structure predictions. Another important
issue is that these scores do not quantify the probability of
two structures sharing same or different folds/topologies. Proteins
have been categorized into various structural families based on
the structural and/or evolutionary similarities, using either human
visual intuition (Murzin et al., 1995) or semi- or fully automated
structural comparisons (Holm et al., 1992; Orengo et al., 1997).
These hierarchical databases provide important insights to our
understanding of protein structure and function, and help gauge
the field of structural comparisons and categorization. However,
it generally lacks a quantitative correspondence between the
structural similarity scores and the various levels of protein structure
categorizations. For example, a simple but often-asked question in
protein structure prediction and assessment is: does the predicted
model have the correct fold (compared with the native structure)
given the RMSD, GDT-score and TM-score?

In this work, we try to address these issues by answering two
questions: (i) what is the statistical significance of each TM-score
value; and (ii) what is the probability of two proteins having the
same fold given the TM-score. Here, the reason for focusing on the
TM-score is that its magnitude is protein size independent, which
facilitates the attainment of length-independent analytical results of
the calculations. Although our focus in the second question is on
the fold level, the results can be easily extended to other levels of
structural similarities.

2 METHODS AND METERIALS

2.1 Definition of TM-score
The TM-score is defined to assess the topological similarity of two protein
structures (Zhang and Skolnick, 2004):

TM-score= 1

L

⎡
⎣ Lali∑

i=1

1

1+d2
i

/
d2

0

⎤
⎦

max

(1)

where L is the length of the target protein, and Lali is the number of the
equivalent residues in two proteins. di is the distance of the i-th pair of
the equivalent residues between the two structures, which depends on the
superposition matrix; the ‘max’ means the procedure to identify the optimal
superposition matrix that maximizes the sum in Equation (1). The scale
d0 = 3

√
L−15−1.8 is defined to normalize the TM-score in a way that the

magnitude of the average TM-score for random protein pairs is independent
on the size of the proteins. TM-score stays in (0, 1] with a higher value
indicating a stronger similarity.

2.2 Dataset of random protein structure pairs
A total of 6684 single-domain structures were culled from the PDB
database (Berman et al., 2002). These proteins share low pairwise sequence
similarities (with sequence identity <25%), as filtered by PISCES (Wang
and Dunbrack, 2003), with protein lengths between 80 and 200 amino
acids. We neglect proteins below 80 residues because they typically have
relatively simple topologies. Proteins larger than 200 residues are mainly
multiple-domain proteins.

A total of 22 334 586 protein pairs are formed by an all-to-all combination
of the 6684 proteins [=6684*(6684 - 1)/2]. The shorter protein in each pair is
used as the target protein in TM-score calculations. To increase the size of the
statistical sample, for each protein pair, the target protein is first superposed
by the TM-score program on the N-terminal structure of the bigger protein
structure with the TM-score normalized by the target protein. Then, the target
protein slides gaplessly along the sequence of the bigger protein with a
window size of 20 residues until less than 20 amino acids remain on the larger
protein. A TM-score is obtained from each of the gapless alignments formed
in the sliding process; each gapless alignment is counted as an independent
structure pair. This procedure on the dataset ends up with a total of 71 583 085
random and protein-like structure pairs.

It should be mentioned that the TM-score superimpositions are obtained
from a set of gapless sliding alignments rather than from the optimal
structural alignments of the two proteins. The purpose of the gapless
alignment is to generate a random structure background, because a structural
alignment, produced by tools such as Dali (Holm and Sander, 1995) and
TM-align (Zhang and Skolnick, 2005), usually represents an optimal match
of a given pair of protein structures that is selected from a huge number
of possible combinations of corresponding residues assignments. Thus, a
structural alignment (with optimal corresponding residues assigned) does not
constitute random structural comparisons even though the non-homologous
protein pairs are randomly selected from PDB.

2.3 Dataset of proteins with same/different folds
To estimate the posterior probability for structure pairs at given TM-scores
sharing the same topology, a collection of protein pairs in both the same
and the different folds is necessary. For this purpose, we borrow the Fold
and Topology definition from the standard protein structure classification
databases: SCOP (Andreeva et al., 2008) and CATH (Cuff et al., 2009) to
generate the same and different fold datasets.

2.3.1 Three sets of same fold structure pairs The first set of protein
domains (Set-I) are collected from the SCOP 1.73 database. After filtering
out the redundant proteins with a sequence identity >95% and the small
proteins with length below 80 amino acids, 11 239 protein domains remain,
which cover 551 main Fold families in SCOP. An all-to-all pairing is then
carried out for the proteins within the same Fold family and ends up with a
total of 746 420 protein pairs which are considered as sharing same folds in
SCOP.

The second set of protein domains (Set-II) are from CATH 3.2.0. The
structure pairs are generated from the proteins in the same ‘Topology’, a
structural level equivalent to the ‘Fold’ in SCOP (Hadley and Jones, 1999).
After the same redundancy and length filtering, 14 830 domains covering 700
main Topologies in CATH are obtained. An all-to-all pairing among proteins
of the same Topology families results in 2 769 868 domain pairs. The reason
for Set-II being much bigger than Set-I is due to the fact that some CATH
families have a dominantly large size.

The third protein pair set (Set-III) is a consensus of the SCOP and CATH
databases where the proteins are of the same fold in both SCOP and CATH.
Due to the different domain splitting system, SCOP and CATH may have
protein domains with the same ID (the same PDB names and chains) but
having different sequence segments. To ensure that SCOP and CATH deal
with the same structures, we filter out those inconsistent domains and collect
only the structures which have the same IDs in the SCOP and CATH and
meanwhile have the identical regions covering >90% of both the SCOP and
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Fig. 1. Venn diagram of datasets of the same/different folds. Set-I contains
746 420 same Fold domain pairs generated from 11 239 protein domains in
SCOP. Set-II consists of 2 769 868 same Topology domain pairs generated
from 14 830 protein domains in CATH. Set-III is the overlap part of Set-I
and Set-II, which includes 186 359 pairs from 5105 consensus domains. Set-
IV contains 13 027 960 all-to-all pairs from the 5105 consensus domains.
Set-I′ is the different fold set for SCOP, generated by subtracting a subset
of Set-I from Set-IV. Set-II′ is the different fold set for CATH, generated by
subtracting a subset of Set-II from Set-IV. Set-III′ is the different fold set for
Set-III and obtained by subtracting subsets of Set-I and Set-II from Set-IV.

CATH domains. By these criteria, 5105 domain structures are culled from
SCOP with a counterpart in CATH, which cover 328 different fold families.
An all-to-all pairing is carried out among the proteins which are consistently
defined by SCOP and CATH as being of the same fold, resulting in 186 359
protein pairs.

2.3.2 Three sets of different fold structure pairs There are three sets of
different fold protein pairs corresponding to the same fold pairs in Set-I, II
and III. Due to the big size of the protein sets, we found that the TM-score
distributions for different fold proteins are very similar between these sets.
Therefore, we generated all the different fold protein pairs from the well-
defined consensus set of the 5105 protein domains from Set-III.

The first different fold protein set is named Set-I′. It contains all-to-all
pairings of the 5105 protein domains (named as Set-IV, 13 027 960 pairs)
but excludes all the pairs that are in the same SCOP Fold family (a subset
of Set-I), which results in 12 815 737 protein pairs. The Set-II′ is similar
to Set-I′ but excludes from Set-IV the domain pairs that are in the same
CATH Topology family (a subset of Set-II), which results in 11 508 804
protein pairs. To generate Set-III′ from Set-IV, any pairs which are either
in the same SCOP Fold family or in the same CATH Topology family are
excluded. This results in 11 506 777 protein pairs. Figure 1 is a Venn diagram
to illustrate the generation of all the datasets in this section.

3 RESULTS

3.1 Statistical significance of TM-score
Extreme value distribution (EVD) is often used to model the smallest
or largest value among a large set of independent, identically
distributed random values (Embrechts et al., 1997). It has been
shown that both sequence and structure comparison scores of
proteins follow the EVD (Levitt and Gerstein, 1998). The general
function of EVD is described as

y= f
(

x|µ,σ
)=σ−1exp

(
µ−x

σ

)
exp

(
−exp

(
µ−x

σ

))
(2)

Fig. 2. TM-score distribution of 71 583 085 gapless comparisons among
6684 non-homologous protein structures. The continuous curve represents
an EVD with the location parameter and the scale parameter being 0.1512
and 0.0242, respectively; the reduced χ2 of fitting is 0.001 obtained by the
Evfit module of MATLAB7 software. The TM-score distributions of four
subdivisions are from proteins with length in [80, 100], [101, 120], [121,
160] and [161, 200], respectively.

where µ is the so-called location parameter and σ is the scale
parameter.

In Figure 2, we show the distribution of TM-score values
calculated from 71 583 085 random protein pairs which are collected
from 6684 non-homologous proteins in the PDB library by gapless
threading. The distribution matches well to the Equation (2) with
the best fitting parameter µ = 0.1512 and σ = 0.0242 estimated by
the Maximum Likelihood method, which is implemented by the
Evfit module in MATLAB7; the error tolerance of fitting is 1.0e-6.

We also split the protein samples into four groups according to
protein size, i.e. [80, 100], [101, 120], [121, 160], [161, 200]; all
of them follow well the same EVD. This data demonstrate the
robustness of the EVD for the TM-score distribution of random
protein pairs within a gapless alignment match (or random protein
matches). Also, the data confirm the previous conclusion that the
TM-score magnitude and distribution of random protein pairs are
independent of protein size (Zhang and Skolnick, 2004).

We are interested in the probability of having a TM-score equal to
or greater than a certain value (x) among random protein pairs, i.e.
P-value of a TM-score. The P-value can be obtained by integrating
Equation (2) from x to 1, i.e.

P-value(x)=
∫ 1

x
f (x|µ,σ)dx=1−exp

[
−exp

(
µ−x

σ

)]
(3)

Figure 3 shows the curve of the P-value versus TM-score with µ

and σ taken from the data in Figure 2. In general, the probability of
finding a TM-score ≤0.17 from random structural pairs is close to 1.
The P-value then decreases rapidly as the TM-score becomes >0.17;
it is significantly <1 when TM-score >0.3. In the inset of Figure 3,
we plot the P-value for the TM-score range in [0.3, 1], which follows
approximately an exponential regression. When TM-score = 0.5, it
corresponds to a P-value of 5.5×10−7.

Many authors have demonstrated that the magnitude of RMSD,
GDT-score and several other matrices are all protein length
dependent (Betancourt and Skolnick, 2001; Levitt and Gerstein,
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Fig. 3. The P-value versus TM-score. The curve is a sigmoid like Boltzmann
function with reduced χ2 equal to 0.0001. Inset: P-value (in logarithm scale)
versus TM-score in [0.3, 1].

Fig. 4. The average TM-scores (with error bars) of gapless alignment
matches on random structural pairs with protein length from 80 to 200 amino
acids. The straight and dash lines above TM-scores = 0.2 indicate the number
of random protein pairs (values on the right-hand side) needed to achieve or
surpass a certain TM-score level. By doing random structure comparisons in
102, 104, 1010 and 1016 times, one can hit a match with a TM-score ≥0.263,
0.374, 0.709 and 0.977, respectively. 1.8×106 random matches are needed
to achieve a TM-score ≥0.5.

1998; Ortiz et al., 2002; Zhang and Skolnick, 2004). A basic
assumption of our work is that the magnitude of TM-score is protein
length independent, which enables us to express the P-value as a sole
function of TM-score. Figure 4 (the bottom) shows explicitly the
average TM-score value and the deviation with proteins of different
sizes (from 80 to 200 amino acids). The data again confirm the size
independence of the TM-score values in random protein pairs.

As an intuitive explanation of the P-value, we also present in
Figure 4 the number of random protein pairs which are needed
to achieve or surpass certain TM-score values; this is converted
from the P-value data shown in Figure 3. For a TM-score = 0.5, for
instance, we need at least 1.8 million random structural matches
so that one structure match can hit a TM-score ≥0.5. When a
TM-score = 0.72, this number increases to 10 billion.

3.2 TM-score of proteins with the same fold
Although the P-value can give a quantitative measure of the
statistical significance of each TM-score value, researchers often

want to know what TM-score approximately corresponds to the
protein pairs sharing the same fold. For example, an often-asked
question in ab initio and template-based protein structure prediction
is how to judge whether a predicted model has the same fold or
topology as the experimental structure (Jauch et al., 2007; Kopp
et al., 2007; Zhang, 2009). Here, we address this issue by calculating
the posterior probability for proteins at certain TM-score having the
same or different folds. We will examine the results of the posterior
probabilities using three different fold/topology standards.

3.2.1 TM-score corresponding to the SCOP Fold level According
to the Bayesian rules, for a given TM-score, the posterior
probabilities of proteins having the same or different fold can be
expressed as:

⎧⎨
⎩

P (F|TM )= P (TM|F )P (F )
P (TM|F )P (F )+P (TM|F )P (F )

P (F|TM )= P (TM|F )P (F )
P (TM|F )P (F )+P (TM|F )P (F )

(4)

Here, TM stands for the TM-score of the compared proteins as
calculated by the structural alignment program TM-align (Zhang
and Skolnick, 2005); F and F represent the events that the proteins
belong to the same and different Fold in SCOP, respectively; P(F)
and P

(
F

)
are the prior probabilities of proteins in same and different

folds; P(TM|F) and P
(
TM|F)

are the conditional probabilities of
TM-score when the two proteins are in the same or different Fold
families, respectively.

In the Set-I and Set-I′, 746 420 pairs of proteins are considered by
SCOP1.73 as the same Fold and 12 815 737 are as not in the same
Fold. Thus, the conditional probabilities can be calculated by⎧⎪⎨

⎪⎩
P (TM|F )= N (TM )∑

N (TM )

P (TM|F )= N (TM )∑
N (TM )

(5)

where N(TM) is the number of protein pairs with a certain TM-score
(TM) in the Set-I, and N (TM ) is the number of protein pairs with
the TM-score in the different fold protein Set-I′. The denominators
are the summation of the same and different fold protein pairs for
all TM-scores in (0, 1], which equals to the total number of protein
pairs in Set-I and Set-I′, respectively.

In Figure 5 (‘filled squares’ and ‘open squares’), we divide the
TM-score space into 20 bins and present the conditional probability
for both the same and different fold proteins. As expected, the same
fold and the different fold proteins are well grouped in two different
TM-score ranges, i.e. the same fold proteins have a higher TM-score
and the different fold proteins have a lower one. However, since
TM-score and SCOP fold do not have a one-to-one correspondence,
there is a small overlap of TM-score between the two protein
datasets.

To calculate the prior probabilities: P(F) and P (F ), for the
purpose of minimizing statistical bias, we collect all the 85 685
protein domains in the SCOP database. An all-to-all pairing is
then carried out on these proteins. The prior probabilities can be
calculated by {

P (F )= N (F )
N (F )+N (F )

P (F )=1−P (F )
(6)
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Fig. 5. The conditional probabilities of TM-score for proteins in the same
fold and different fold families as defined by SCOP (Set-I; Set-II′), CATH
(Set-II; Set-II′) and SCOP and CATH (Set-III; Set-III′).

Fig. 6. The posterior probability of proteins with a given TM-score being in
the same Fold (squares, triangles and stars points) or different Fold family
(circle points). The Fold family is defined based on either the SCOP Fold level
(SCOP, Set-I) or the CATH Topology level (CATH, Set-II) or a consensus
of SCOP Fold and CATH Topology families (Consensus, Set-III).

where N(F) and N (F ) are, respectively, the numbers of the same
fold and the different fold pairs according to the SCOP definition.
Overall, P(F) = 0.0142 and P (F ) = 0.9858 in our counting.

Figure 6 (‘filled squares’) shows the posterior probability for two
proteins with a certain TM-score to be in the same SCOP Fold,
which is calculated by integrating the data of Equations (5) and (6)
into Equation (4). When TM-score <0.4, there are almost no protein
pairs which are in the same SCOP Fold family. On the other hand,
when TM-score >0.6, the probability of the two proteins in the
same SCOP Fold rapidly increases to >65%. There is a clear phase
transition occurring around the half scale of TM-score.

3.2.2 TM-score corresponding to the CATH Topology level Since
the fold definition can be dependent on subjective choices, to
examine the robustness of the TM-score distribution, we calculate
the posterior probability using another widely-used database, CATH
(Cuff et al., 2009). A total of 2 769 868 protein pairs are considered
by CATH as having the same Topology in Set-II and 11 508 804
pairs as having different Topology in Set-II′.

In Figure 5 (‘filled triangles’ and ‘open triangles’), we show the
conditional probabilities of the same and different fold protein pairs
in the CATH database. Compared with the SCOP data, there is a

clear shift of the distribution of the same fold pairs toward a smaller
TM-score value, which indicates that the fold definition in CATH
Topology is on average broader than that in SCOP Fold, although the
different fold distribution of CATH is similar to that of SCOP. This is
consistent with the fact that CATH is dominated by big families and
therefore the number of protein pairs in Set-II is much larger than
that in Set-I. Correspondingly, the prior probability P(F) of CATH
Topology calculated from all the 114 125 CATH domains based on
Equation (6) is 0.0299, which is higher than that of SCOP (0.0142),
because more protein pairs are categorized into the same Topology
families due to the broader structural cutoff in CATH. The prior
probability of the different Topology proteins P (F ) = 0.97.

Figure 6 (‘filled triangles’) shows the posterior probabilities of
protein pairs being in the same CATH Topology families with given
TM-scores. There is a slight shift of CATH compared with SCOP
toward smaller TM-score as well; but a similar rapid phase transition
is observed in TM-score between 0.4 and 0.6.

3.2.3 TM-score corresponding to the consensus SCOP and CATH
fold families Due to the slight inconsistence between SCOP
and CATH databases, we next considered a consensus set of
protein pairs, Set-III, where the proteins are considered as the
same Fold/Topology by both SCOP and CATH, which covers 328
consensus structural families. The different fold protein pairs (Set-
III′) are those which are categorized into different structural families
by both databases.

As shown in Figure 5 (‘filled stars’), the conditional probabilities
of the TM-score for proteins in the same families in the consensus
set are slightly shifted toward a larger TM-scores compared with
SCOP, because of the even tighter definition of the fold family.
Similarly, the prior probability for the same fold P(F) = 0.0149 while
P (F̄ ) = 0.985 for the different fold proteins.

In Figure 6 (‘filled stars’), we present a posterior probability of
proteins at the same Fold and different Fold families based on the
consensus definition from both SCOP and CATH. There is again a
rapid phase transition around the TM-score = 0.5. Compared with
SCOP and CATH, however, this transition is more rapid.

3.2.4 Robustness of posterior probability to structural variations
The ‘same Fold’ in the protein structure classifications usually
refers to the similar topological arrangements of the secondary
structure elements in the core region of the structures (Andreeva
et al., 2008; Cuff et al., 2009). However, the calculations in the
above sections were made on all protein pairs in the SCOP and
CATH families, where some of the same fold domains have long
tails and outlier supersecondary/loop structures that have different
orientation, despite the similar topology in the core region. In
this section, we examine the influence of these outlier structural
variations on the posterior probability of TM-score.

We consider two structure filters to refine our structure datasets.
First, we exclude from Sets-I, II, III the protein pairs which have a
difference in the radius of gyrations (RGs) >10%. This reduces the
number of protein pairs in Sets-I, II, III from 746 420, 2 769 868,
186 359 to 449 281, 1 360 782 and 117 446, respectively. In
Figure S1A (see Supplementary Materials), we show the conditional
probability of the filtered datasets, which has a slight shift toward
higher TM-score values, compared with the raw datasets from SCOP,
CATH and the consensus, due to the removal of the structure outliers.
Supplementary Figure S1B shows the posterior probability of the
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TM-score for the filtered datasets, which is almost the same as
that calculated from the raw data. The deviation in the posterior
probability between the raw and filtered datasets is much smaller
than that in the conditional probability. For example, based on
Figure 5 and Supplementary Figure S1A, the correlation coefficients
of conditional probability curves between filtered and raw ones (Set-
I, Set-II, Set-III) are 0.947, 0.969 and 0.926, respectively, while
based on Figure 6 and Supplementary Figure S1B, the corresponding
correlation coefficients between posterior probabilities increase to
0.999, 1.0 and 0.999. This indicates that posterior probability
is indeed less influenced by the changes in the input datasets.
This robustness is due to the posterior equation P (F|TM ) =
P (TM|F )P(F)

/
P

(
TM

)
, where the prior probability from a large

base of datasets keeps constant and the change in conditional
probability is partially canceled out by the normalization of P(TM)
which changes accordingly. Thus, the overall posterior probabilities
are less influenced by the filter of the structural outliers.

Second, we detect and remove the long tails at the N- and C-
terminals by STRIDE (Frishman and Argos, 1995) from all protein
domains in SCOP and CATH families. Thus, the TM-score of each
pair may be increased because of the decreasing of the target protein
length while the core region alignment in TM-align is unchanged.
Supplementary Figures S2A and S2B show the conditional and
posterior probabilities for the refined datasets. Cutting the long
tails has a relatively larger influence on the conditional probabilities
than the first filter from the RG cutoffs. However, both filters have
no obvious influence on the posterior probabilities because of the
robustness of the prior probability and the normalization effect of
the probabilities in the posterior probability calculation.

3.2.5 Summary Combining the results from the three different
datasets, as well as bearing in mind the robustness of the posterior
probability to the structural variations, it seems quite safe to
assign TM-score = 0.5 as a rough but quantitative cutoff for protein
Fold/Topology definition, i.e. most of proteins with TM-score >0.5
can be considered as of the same topology whereas most proteins
with a TM-score <0.5 should be of different topology. Surely, this
cutoff may vary slightly with the different definitions of ‘Same
Fold’. For CATH, a TM-score at 0.5 indicates that the structures
have a 37% probability being in the same Topology family; when
TM-score increases to 0.6, this probability increases to 80%. As for
SCOP, a TM-score of 0.5 only corresponds to a 13% probability for
the structures to be in the same Fold family; but a TM-score = 0.7
has the posterior probability rapidly increased to 90%. These results
are consistent with the conditional probability data in Figure 5, i.e.
the CATH Topology level has relatively looser criteria to define the
same fold proteins than the SCOP Fold level. When the TM-score is
further away from the cutoff value of 0.5, the conclusion becomes
gradually safer in all the criterions. When TM-score = 0.4, for
example, >99.9% of proteins are not in the same fold according to
the consensus definition of SCOP and CATH; when TM-score = 0.6,
>90% of proteins are in the same fold based on the consensus
criterion.

4 DISCUSSION AND CONCLUSION
We first examined the TM-score distribution of randomly selected
non-homologous protein pairs using gapless threading, and found

that it follows a simple EVD independent of protein length.
This allows us to calculate the P-value to estimate the statistical
significance of each TM-score value. When the TM-score <0.17,
the P-value is close to 1, which means that any protein structures
or computer models at this level of similarity is indistinguishable
from random structure pairs. The P-value decreases rapidly
<0.001 when TM-score >0.3, a region of structural similarity
which is significantly different from random structures. When
TM-score = 0.5, the P-value is reduced to 5.5×10−7, meaning that
at least 1.8 millions of random protein pairs are needed to achieve
on average one of this similarity.

It should be noted that this data does not contradict a previous
study (Zhang et al., 2006) where the average TM-score of the
structural alignment by TM-align on random structure pairs is ∼0.3.
For a given pair of proteins, the structure alignment program, TM-
align (Zhang and Skolnick, 2005), needs to scan a huge number of
possible alignments (∼LL2

1 in principle, where L1 and L2 are the
size of proteins) and selects and returns an optimal alignment that
corresponds to the highest TM-score. Thus, the average TM-score
reported by TM-align for random structure pairs is much higher
than the average TM-score from a gapless alignment for the
same random structure pairs because the former represents an
optimal alignment that is far from a random alignment selection
although the structure pair itself is randomly selected. Interestingly,
in the recent CASP7 and CASP8 blind protein structural
predictions, the average TM-score of the worst three models
for each target are 0.161 ± 0.041 and 0.168 ± 0.042, respectively
(data taken from http://zhanglab.ccmb.med.umich.edu/casp7 and
http://zhanglab.ccmb.med.umich.edu/casp8); both are below and
near 0.17. This means that the predicted models from these bottom
groups are not more than a random pickup of structures from the
PDB library.

Second, we developed an approach for estimating the posterior
probability of proteins with given TM-scores to be in the same
or different fold family. Using three different datasets which
has Fold/Topology defined from the standard SCOP and CATH
databases, we consistently observed a similar rapid phase transition
of the probability around TM-score = 0.5. This indicates that
TM-score may be used as a quantitative criterion for assessing
whether protein structures or model predictions are of the same
topology, i.e. for TM-score <0.5, proteins are mostly not in the
same fold while for TM-score >0.5, proteins are generally in the
same fold. This criterion becomes gradually safer when the actual
TM-score reaches a value further away from the cutoff.

We also examined the influence of the structural outliers on
the TM-score by cutting the long tails or excluding protein pairs
of different RGs. Although the conditional probabilities of the
TM-score values have marginal changes, the posterior probability
is not influenced by the structural outliers mainly because of the
canceling-out effect of probabilities in the posterior calculation. A
robust phase transition is observed at TM-score = 0.5 in both datasets
whether including or excluding the structure outliers.

One of the immediate uses of the quantitative TM-score thresholds
is for automated protein structure classifications (Murzin et al.,
1995; Orengo et al., 1997). Because of the rapid increase of protein
structures accelerated by various proteomic projects, it becomes
increasingly infeasible for the human visualization to conduct large-
scale protein structure classification, where development of the
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quantitative scoring functions that corresponds to specific structural
similarity levels is the key. Besides, the proposed TM-score cutoffs
can also be of important use for the automated assessment of
protein structure predictions, especially for that in the template
free modeling category where the majority of the predictions are
incorrect and even the human visual assessments have difficulties
in judging whether the predicted models have the same or
different topology to the native (Ben-David et al., 2009; Jauch
et al., 2007). The reported quantitative TM-score thresholds is
promising to provide an automated and yet reliable reference to
the human-based assessments in this category. Moreover, in protein
structure prediction, for example, the multitemplate-based method
ModFOLD that is designed for identifying the template models
by training multiple MQAP scores with TM-score (McGuffin,
2008), the quantitative TM-score cutoff system may help in
designing the specific training TM-score cutoffs for selecting
models sharing specific levels of structural similarities. Finally,
the fold/topology assessment of protein domains is of critical
importance in elucidating the functional and evolutionary relations
among protein molecules (Chothia et al., 2003; Zhang, 2009),
where the quantitative correspondences of TM-score and topology
classifications have potential use in constructing various structure-
based networks from large-scale structure databases for functional
and evolutional annotation purposes (Dokholyan et al., 2002;
Qian et al., 2001). To facilitate these uses, we have built an
online server called TM-fold, which helps calculate the fold
classifications for any given structure pairs. The server also allows
users to upload large-scale structure datasets and generate TM-score
analyses based on the refined core-region structures with the
long tails/loops outliers truncated. TM-fold is freely available at
http://zhanglab.ccmb.med.umich.edu/TM-fold.

The second part of the studies in this article has been focused
on the fold level of protein structures, which is mainly because this
concept of topology has been most generally used in protein folding
and protein structure prediction; also, this category of structure
similarity is clearly defined and has equivalency in both SCOP
and CATH databases (Hadley and Jones, 1999). Nevertheless, the
extension of our approach to other levels of homologous family and
superfamily should be straightforward.
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