
ANGLOR: A Composite Machine-Learning Algorithm for
Protein Backbone Torsion Angle Prediction
Sitao Wu, Yang Zhang*

Center for Bioinformatics and Department of Molecular Bioscience, University of Kansas, Lawrence, Kansas, United States of America

Abstract

We developed a composite machine-learning based algorithm, called ANGLOR, to predict real-value protein backbone
torsion angles from amino acid sequences. The input features of ANGLOR include sequence profiles, predicted secondary
structure and solvent accessibility. In a large-scale benchmarking test, the mean absolute error (MAE) of the phi/psi
prediction is 28u/46u, which is ,10% lower than that generated by software in literature. The prediction is statistically
different from a random predictor (or a purely secondary-structure-based predictor) with p-value ,1.06102300 (or
,1.06102148) by Wilcoxon signed rank test. For some residues (ILE, LEU, PRO and VAL) and especially the residues in helix
and buried regions, the MAE of phi angles is much smaller (10–20u) than that in other environments. Thus, although the
average accuracy of the ANGLOR prediction is still low, the portion of the accurately predicted dihedral angles may be
useful in assisting protein fold recognition and ab initio 3D structure modeling.
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Introduction

There are three backbone dihedral torsion angles along with the

protein peptide chains, which dictate the topology of protein 3D

structures, i.e. Q (involving backbone atoms C-N-Ca-C), y (N-Ca-C-

N), and v (Ca-C-N-Ca). Because of the planarity of the partial-

double peptide bond, the torsion angle v is almost fixed at 180u with

rare cis cases of 0u [1]. Therefore, if the values of the phi (Q) and psi

(y) angles are known, the geometry of the global protein structures

can be readily constructed with the standard bond length. The

experimental procedure of the phi/psi angle determination is usually

laborious and time-consuming. With the development of computing

technology, the computer-based algorithms can accelerate the

determination of backbone dihedral torsion angles. For example,

SHIFTOR [2] and PRIDICTOR [3] developed at Wishart’s lab

can generate quickly high-resolution predictions of phi and psi values

using the chemical shift data and the sequence information. In the

field of structural bioinformatics, the torsion angle prediction data

have found their usefulness in aiding secondary protein structure

prediction [4,5], sequence alignment [6], fold recognition [7,8] and

protein structure modeling [9,10].

Encouraging progress has been made in purely sequence-based

backbone torsion angle predictions, where investigators usually

divide the backbone conformations into several discrete states based

on the phi/psi values and then use various training algorithms to

predict the states of variant phi/psi values [5,7,11–15]. The popular

training techniques include neural networks (NN) [5,14], support

vector machines (SVM) [14,15] and hidden Markov models (HMM)

[7,11]. Although these methods can achieve up to 80% prediction

accuracy on the discrete states, they could not specify the real phi/psi

values at each state, which renders the predictions less informative

especially when the state division is rough. Wood and Hirst [4] first

developed the DESCTRUCT algorithm which trains the sequence

profile and the secondary structure information by neural networks

to generate the continuous and real-value psi-angle predictions. The

correlation coefficient between the predicted and experimental

values is about 0.47. Later, Dor and Zhou [16] developed another

neural network based program of SPINE which claimed a higher

correlation coefficient of 0.62.

While both DESCTRUCT and SPINE trained their data on

neural networks (NN), it is well-known that NN trains its parameters

based on local optimization [17]. Compared with NN, SVM has the

advantage of identifying the global optimum despite longer training

time [18]. To further improve the phi/psi angle prediction accuracy,

as well as to systematically examine the state-of-the-art of the

dihedral angle predictions based on a large-scale protein set, we try

to develop a new composite prediction tool using both NN and SVM

techniques. Except for the sequence profiles obtained by PSI-

BLAST [19], we found that the predicted secondary structure and

solvent accessibility information can enhance the accuracy of the

torsion angle predictions when used in a coherent training. The

predictions are benchmarked on a large-scale set of non-redundant

known proteins; these are also compared with the results of other

algorithms in literature and the random angle predictions with the

goal to systematically examine the strength and weakness of the

algorithms at different environments.

Methods

The flowchart of ANGLOR is presented in Figure 1. For a

given target sequence, ANGLOR first generates multiple sequence

alignments by searching through a non-redundant sequence

database. The sequence profile is then used to generate secondary

structure and solvent accessibility predictions. Finally, all the
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features are fed into two machine learning tools (NN and SVM)

with outputs being the predicted real-value phi and psi angles.

In the following, we introduce the prediction algorithms,

training and testing data in details.

Input features of training machines
For a given residue of the target protein, we extract three types of

the sequence-based features: (1) position-specific scoring matrices

(PSSM); (2) secondary structure (SS) predictions; (3) solvent

accessibility (SA) predictions. The PSSM is generated by the PSI-

BLAST search of the query against a non-redundant sequence

database [19] with 20 log-odds scores taken at each position. The

secondary structure (SS) is predicted by PSI-PRED [20], with the

three states defined as alpha-helix, beta-strand, and coil. The solvent

accessibility (SA) is predicted by the neural networks as well [21,22],

where a two-state feature is assigned to the residue i dependent on

predicted SA values ,25% (buried) or $25% (exposed).

The input features for residue i should include neighboring

residues in a window around i since the phi and psi angles are

strongly correlated with the structures of neighboring residues. We

calculated the average prediction error of a simple SVM training

(only with the PSSM feature) on 460 non-homologous validation

proteins using different window sizes of 11, 13, …, 23. As a result,

the window size of 21 is a suitable value with a low MAE value (a

definition of MAE will be given below) and in the meantime with

acceptable computer resource consumption.

To select an appropriate set of input training features, we tried

different composition of predictors based on PSSM, PSSM+SA,

PSSM+SS, and PSSM+SA+SS. We found that with the

introduction of solvent accessibility (SA) into PSSM, the MAE

value is decreased by 2% (or 5%) for phi (or psi) angles. With both

SA and secondary structure (SS) added into PSSM, the MAE

value is decreased by 6% (or 27%) for phi (or psi) angles.

Therefore we select PSSM+SA+SS as our input feature set and the

window size equal to 21 in our final training. The total number of

the features in PSSM+SS+SA is 525 [ = 21*(20+3+2)] for the

training of phi or psi angles.

Training techniques: combination of NN and SVM
To find the most efficient training technique, we test both NN

and SVM [23] as predictors for different angle predictions. For

NN, we use the FANN software [24]. By trial and error, the best

performance on the validation proteins is obtained by training

with 50 hidden neurons in one hidden layer and 1000 epochs; the

other parameters are used as given by default in FANN.

For SVM, we use the LIBSVM software [25] where the support

vector regression is used instead of the support vector classification

in comparison with other SVM tools. We obtain the least MAE on

validation data by training with c= 0.005 for radial basis kernel

functions (data not shown); the other parameters are used by

default in LIBSVM.

After the parameter optimization of each predictor, for phi angles

on validation data, MAE by NN is 10% less than that by SVM. For

psi angles, however, MAE by SVM is 10% less than that by NN. For

the best performance, we will use FANN for the phi angle prediction

and LIBSVM for the psi angle prediction. We also attempt to

combine the consensus results of two predictors by voting; but it does

not work as good as the best individual predictor in the phi/psi angle

predictions (data not shown). We will discuss in more detail the

difference of SVM and NN performance in the Result section.

Training, validation and testing protein sets
For the training, validating and testing of the algorithms, we

select 1,989 non-homologous proteins (,25% sequence identity)

with size ranging from 50 to 865 from the PDB library through

PDBSELECT (2006 March) [26], where the entries with broken

chains or missing residues have been excluded. Among them, 500

(460/1,029) proteins are used as training (validation/testing) data.

The total residues in the 500 (460/1,029) proteins are 72,918

(89,653/146,517). We use DSSP program [27] to extract the

experimental values of the phi and psi angles. The phi/psi angles

of the N- and C-terminal residues are neglected due to the

incompleteness of four continuous backbone atoms. A list of the

training, validation and testing proteins is available at our website

http://zhang.bioinformatics.ku.edu/ANGLOR/benchmark.html.

Evaluation criterion
Throughout the validation and testing of the algorithms, we assess

the phi/psi angle predictions by the mean absolute error (MAE),

which is defined as the average difference in degrees between the

predicted (P) and the experimental values (E) of all residues, i.e.

MAE ~
1PM

i~1 Li

XM
i~1

XLi

j~1

Pij { Eij

�� ��, ð1Þ

Figure 1. Flowchart of ANGLOR for the phi and psi angle predictions. Three sets of features, position-specific scoring matrix (PSSM),
secondary structure (SS) and solvent accessibility (SA), are used as inputs of two machine-learning predictors (neural networks and support vector
machines) for phi and psi separately.
doi:10.1371/journal.pone.0003400.g001
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where M is the number of proteins, Li is the total number of residues

(excluding N- and C-terminals) in the protein i. Here, both P and E

are in the range of [2180u, 180u]. A direct subtraction of the two

values may result in an artificial MAE .180u. For example, when Pij

= 2170u and Eij = 175u, the real prediction error should be 15u but

the direct angle subtraction is 345u. To rule out the artificial effect,

we make a transformation of the predicted angles before comparing

them to E in Eq. 1, i.e.

P ~

P’, if P’ { Ej jƒ 1800

P’ z 3600, if P’ { E v {1800,

P’ { 3600, if P’ { E w 1800

8><
>: ð2Þ

where P9 is the original value of the predicted torsion angles.

Here, we do not use the Pearson correlation coefficient (CC) of

P and E in our evaluation. Because of the angle transformation,

the predicted phi/psi angles for some residues can go beyond the

region [2180u, 180u]. Since the CC calculation is very sensitive to

the outliers in the P-E plot, a small change of P in these residues

may lead to drastic changes in the CC values. On the other hand,

if we do not make the angle transformations, irregular correlation

coefficient will be generated due to the artificial angle values near

the border. These render CC a less robust quality assessment

compared with MAE.

Results

Overall results
We calculate the average performance of the ANGLOR

dihedral angle predictions for the 1,029 non-homologous testing

proteins, which are also non-homologous to the training and

validation proteins. The mean absolute errors, MAE, for all the

146,517 residues are 28.2u and 46.4u for phi and psi respectively.

It is interesting to note that phi angle predictions are obviously

more accurate than psi angle predictions, although the predictors

have been trained based on the same set of proteins with the same

set of features. To understand the mathematic reason behind the

difference, we consider two simplified models as shown in

Figures 2A and 2B. In Figure 2A, the values of Y-axis (output)

are generated by random fluctuations around four constants in the

specific regions of X (input), i.e.

Figure 2. Two simplified models with the output Y generated from random processes for a given input X in [0, 30]. (A) Training data
generated from the random fluctuations around four horizontal line segments; (B) training data generated from the random fluctuations around two
sine waves of the frequency equal to 1/2p and 1/p respectively; (C) testing data (solid) and prediction results by two training predictors of SVM
prediction (dashed) and NN prediction (dotted) for the model from A; (D) testing data (solid) and prediction results by two training predictors of SVM
prediction (dashed) and NN prediction (dotted) for the model from B; (E) histogram of Y from A; (F) histogram of Y from B.
doi:10.1371/journal.pone.0003400.g002

Torsion Angle Prediction

PLoS ONE | www.plosone.org 3 October 2008 | Volume 3 | Issue 10 | e3400



Y ~

{0:8 z rand, 0 ƒ X v 5

{0:2 z rand, 5 ƒ X v 15

0:8 z rand, 15 ƒ X v 26

0:2 z rand, 26 ƒ X v 30

8>>><
>>>:

, ð3Þ

where rand is a random number uniformly distributed in [20.15,

0.15]. In Figure 2B, the Y values are generated with random

fluctuations around two sine waves, i.e.

Y ~
sin (X ) z rand, 0 ƒ X v 15

sin (2X ) z rand, 15 ƒ X v30

�
, ð4Þ

where rand is the same as that in Eq. 3. The first function is

obviously easier to predict by machine learning if the algorithm

can find the ranges of four line segments, while in the second

model the algorithm needs to recover two sine functions with

different frequencies. Actually, when we use SVM (or NN)

programs with the best tuned parameters to train these two

models, the MAE of the Y prediction for the testing data is 0.069

(or 0.061) and 0.104 (or 0.369) for Models 1 and 2, respectively.

The predicted Y values by the different techniques for the two

models are presented in Figures 2C and 2D respectively. The best

MAE (0.061) of Model 1 is 70% lower than that (0.104) of Model

2, which indicates Model 1 is indeed easier to predict.

For Model 1, the performance of NN is slightly better than that of

SVM. It is because SVM tends to memorize all possible support

vectors around the training curves which may be over-fitted for a

simple function as Model 1. NN uses only 5 hidden neurons with less

memorization and can achieve similar (or even better) performance

for the simple patterns. For Model 2, a more complicated function,

SVM memorizes all possible support vectors around the training

curves in Figure 2B so that the prediction is close to testing data in all

the range as shown in Figure 2D. However, NN uses unified weights

for different input regions which is biased towards some specific

input region, e.g. [0, 13] in this example (Figure 2D). The NN

performance in the whole region is thus deteriorated for the more

complicated curves. This difference may explain the reason for the

performance variations of NN and SVM on phi and psi angles as

seen in the training and testing data, because the psi angle

distribution is more complicated.

To quantitatively assess the complexity of the models, we divide

the outputs into N equally spaced bins and define the entropy of

the models as

S ~ {
XN

i~1

Pi log Pi, ð5Þ

where pi is the probability of Y in the ith bin. For the two models in

Figure 2, the entropy of Figure 2A is 1.99, which is 46% lower

than that of Figure 2B (2.91). The lower entry means that the

model is less uncertain and therefore easier to learn.

A more intuitive way to view the uncertainty of the models is to

plot the histogram of the outputs. If the output distributions are

biased to some specific values as shown in Figure 2E, the entropy is

lower and the model is thus easier to learn. On the other hand, if

the output histogram tends to be uniformly distributed in a larger

range as shown in Figure 2F, the entropy should be higher.

In Figure 3A, we present the Ramachandran plot which is

collected from 500 training proteins, where the experimental phi

values have only a single peak around 270u (corresponding to

alpha-helix, beta-strand and polyproline-II in Figure 3B) while psi

angles have two peaks around 250u (alpha-helix) and 130u (beta-

strand and polyproline-II in Figure 3C) [28]. From a statistical

perspective, the narrow single-peak distribution of phi angles and

double peaks of psi angles in the Ramachandran plot result in the

different degrees of uncertainty and therefore the different

prediction accuracy for the phi and psi angles. Physically, the

narrow distribution of the phi angle is due to the larger steric

collision effect of the backbone oxygen atom when phi changes,

compared to that of the hydrogen atom on N which corresponds

to the psi angle change [1,29]. More specifically, the entropy of the

phi angles calculated from the 500 non-homologous proteins by

using 36 bins in [2180u 180u] is 2.67, which is 13% less than that

of psi angles (3.03).

As a comparison, we also calculate the prediction accuracy for

psi angles by SPINE (which provides only psi angle predictions),

based on the same set of testing proteins. We note that the testing

proteins are not necessary to be non-homologous to the SPINE

Figure 3. Ramachandran plot and histograms of phi and psi angles calculated from residues in 500 non-homologous training
proteins. (A) Ramachandran plot; (B) histogram of phi angles; (C) histogram of psi angles. Alpha-helix, beta-strand and polyproline-II are represented
by ‘‘a’’, ‘‘b’’ and ‘‘P’’ respectively.
doi:10.1371/journal.pone.0003400.g003
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training proteins because the list of training proteins is not

available to us. We are unable to show the data from

DESCTRUCT here because we do not have the software or find

its online server. Overall, ANGLOR has a clearly higher accuracy

(with MAE = 46.4u) than SPINE (with MAE = 50.9u). The better

performance of ANGLOR may be due to the optimized

combination of both NN and SVM training techniques and the

more training features (PSSM+SA+SS). The selection of the angle

range of training is also different in our algorithm (while SPINE

[16] uses a nonlinear angle-transformation in their training which

we found harmful to the accuracy in our case).

In Figure 4, we show illustrative examples of the ANGLOR

prediction on phi and psi angles from three typical alpha-, beta-,

and alpha/beta-proteins. The first protein is from Chain D of the

truncated neuronal snare complex protein (PDB ID: 1n7s), which

has 66 amino acids and includes one long alpha helix (Figures 4A

and 4B). The predicted phi angles are close to experimental value

with a MAE = 4.7u for the alpha residues and a MAE = 7.6u for

the coil ones. In the second example, the target, from Chain B of

human leukocyte antigen (PDB ID: 1k5n), has 100 residues and

contains ten beta strands. Compared to the alpha proteins, the

prediction accuracy is lower for both phi (MAE = 24.1u for beta

residues and MAE = 31.7u for coil residues) and psi (MAE = 26.8u
for beta residues and MAE = 49.7u for coil residues) angles. But

the ANGLOR predictions still follow well the experimental curves

(Figures 4C and 4D). In the third example, we show the alpha/

beta-protein from Chain B of the transcriptional regulator protein

(PDB ID:1lj9) which has 142 residues with six alpha helices and

three beta strands. The overall prediction accuracy is between the

alpha and beta proteins, i.e. for phi (psi) angles, MAE = 6.3u
(15.1u) for alpha residues, MAE = 22.8u (25.0u) for beta residues,

and MAE = 36.0u (57.8u) for coil residues.

Residues in different environments
In Table 1 (Rows 4–6), we present the ANGLOR prediction data

for the residues from different secondary structures. In general, it is

known that the local geometry of coils has much higher diversities

than that of the regular secondary structures. Accordingly, the MAE

value of the phi/psi angles in our predictions is much smaller in

regular secondary structures than that in coil regions. Moreover, the

MAE value of the alpha-helix residues is smaller than that of the

strands, which is also closely related with the complexities of the

angle distributions. Quantitatively, the alpha-helix residues have the

lowest angle entropy for phi (1.60) and psi angles (1.74) while the coil

residues have the largest angle entropy (2.92 and 3.28) (see Columns

5 and 8 in Table 1).

In Rows 7 and 8, we divide the predictions into buried and

exposed categories, where the buried residues are defined as those

with a relative solvent accessible area ,25% and other are

exposed residues (a definition with other SA cutoffs is possible but

will result in similar results). The buried residues have a MAE (for

phi/psi angles) which is 29%/20% lower than the exposed

residues in the ANGLOR prediction. This is due to the fact that

the angle entropy of the buried residues is lower than that of the

exposed ones, demonstrating the higher regularities of the protein

fragments in core regions.

Due to the various steric collisions between the side-chain and

the main-chain [1], it is anticipated that different amino acids have

different entropies and thus different degrees of difficulties for the

torsion angle predictions. In the lower part of Table 1, we examine

the ANGLOR performance for each of 20 amino acids. Not

surprisingly, Glycine has the largest prediction error (75u/67u for

phi/psi angles), which is mainly due to the fact that Glycine has no

side-chain atom except for a proton. It has therefore the least steric

restriction to the backbone dihedral angle motions. Accordingly,

the angle entropy of Glycine is the highest among all the 20 amino

acids (Table 1).

Proline has the least MAE (,15u) for phi angles but has an

unusually large MAE (,61u) for psi angle prediction. This is because

of its special side-chain structure which has the delta-carbon atom

attached to the backbone nitrogen and significantly restricts the

backbone rotation at the phi direction. But the leaning of side-chains

toward the nitrogen has almost no steric restriction to the C-O

backbone atoms. These result in a significant difference in the torsion

angle entropy for Proline between phi (1.61) and psi (2.91).

Comparison to naı̈ve predictors
Although the above comparisons show some degree of

advantage of ANGLOR over other algorithms in literature, a

comparison of the ANGLOR prediction to simple and naı̈ve

predictors should help to quantitatively justify the necessity of the

training efforts.

We first compare ANGOR with a naı̈ve random predictor. A

simple method to generate the random prediction is to take phi/

psi angles randomly from an evenly distributed pool in [2180u,
180u], which will have an average MAE = 90u. In an alternative

way, we randomly take the phi/psi angles from an amino-acid-

specific pool that is collected from 500 training PDB proteins.

Since the pool has the information of angle distribution of real

PDB structures, the second method should generate more accurate

angle predictions than the first method. In the following, we will

compare ANGLOR with the second (more challenging) data set.

To have a stable distribution, the random process is repeated by

10,000 times for each target residue.

For the 1,029 testing proteins, the performance (MAE) of all

residues in specific local environments by the random predictor is

listed in Columns 4 and 7 of Table 1. Overall, the ANGLOR

prediction is better than the random prediction with MAE

reduced by 21.1u for phi and by 42.4u for psi. For the residues in

different secondary structures, the improvement for alpha-helix

residues is the largest (by 28.0u for phi and by 56.9u for psi) despite

of the fact that the random prediction for alpha-helix residues in

our sample is the lowest. This indicates that the machine-learning

techniques work the best for those residues which have the best

regularities. If we look at the specific amino acids, the MAE of the

ANGLOR prediction is significantly smaller than that of the

random predictor for all amino acid types with p-values

,1.0610273 by Wilcoxon signed rank test. The overall p-value

when counting all amino acids is close to zero (,1.06102300).

Second, we compare ANGOR with a more challenging predictor

based only on secondary structure predictions. For this purpose, we

first calculate the average torsion angles in three secondary structures

(a helices, b strands and coils) by DSSP program [27] on the 500

training proteins with solved 3D structures, i.e. phi(p-

si) = 264.7u(237.6u) for helices, 2111.0u(122.2u) for strands, and

267.3u(55.0u) for coils. Then for test data, we predict the secondary

structure status of each residue by PSI-PRED [20] with the phi/psi

angles given by the mean values calculated from the statistics of the

PDB structures. Using this simple predicator, the overall accuracies

for the 1029 testing proteins are MAE = 30.4u for phi angles and

MAE = 49.6u for psi angles, which are (not surprisingly) much higher

than the random predictions. But ANGLOR predictions are still 2.2u
more accurate in phi angle and 3.2u more accurate in psi angle than

the naı̈ve secondary- structure-based predictor. This difference

corresponds to a p-value ,1.06102148 by Wilcoxon signed rank test.

The increase in accuracy shows the adding to a purely secondary-

structure-based predictor by the combinatory training of SS, PSSM

and the solvent accessibility information.

Torsion Angle Prediction
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Discussion

We developed a composite machine-learning algorithm of

ANGLOR for ab initio prediction of real-value backbone torsion

angles (phi and psi), which has been tested on the large-scale non-

homologous protein set. One of the main purposes of this work is to

examine systematically the state-of-the-art of the machine-learning

based dihedral angle predictions and estimate the potential

usefulness in 3D structure predictions. The executable ANGLOR

program and the on-line server are freely available for academic

users at http://zhang.bioinformatics.ku.edu/ANGLOR.

Technically, we found that the current phi/psi prediction can

be further improved by the combination of different training

methods and a more comprehensive selection of input features. By

using SVM for psi angles and NN for phi angles which use features

including sequence profiles, predicted secondary structures and

solvent accessibilities, the mean absolute error (MAE) of the

ANGLOR psi angle predictions is .10% smaller than that of the

available software in literature. As a confirmation of the necessity

of the training, the MAE of ANGLOR is statistically smaller than

those of a purely secondary-structure based predictor and a

random predictor with a p-value ,1.06102148 and ,1.06102300

by Wilcoxon signed rank test, respectively.

The accuracy of the machine-learning based torsion angle

predictions is closely related with the diversities of the angle

distributions in real structures. In general, the psi angles are more

Figure 4. The comparison of predicted (dotted lines) and experimental values (solid lines) of phi and psi angles for three typical
alpha-, beta-, and alpha/beta-proteins. Secondary structures of the proteins are signified at the lower part of each box, with coil, beta-strand,
and alpha-helix residues represented by thin lines, thick lines, and thick curves, respectively. (A) phi angle for 1n7sD; (B) psi angle for 1n7sD; (C) phi
angle for 1k5nB; (D) psi angle for 1k5nB; (E) phi angle for 1lj9B; (F) psi angle for 1lj9B.
doi:10.1371/journal.pone.0003400.g004

Torsion Angle Prediction
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divergently distributed than phi and therefore the phi prediction is

more accurate than that of psi. Similarly, ANGLOR generates

better predictions for the residues in helices/strands than those in

coils, and for buried residues than exposed residues. By the analysis

of two simplified models, it is shown that the entropy can be used to

quantitatively define the angle distribution diversities, which is

closely correlated with the machine-learning performance.

Because of the various steric collision effects of side-chain with

backbone atoms, different amino acids have different degrees of

freedoms in the backbone torsion angles. This results in much

lower prediction accuracy of ANGLOR for some flexible amino

acids than others. For example, both MAE for phi/psi of Glysine

and for psi of Proline are .60u. One way of improving ANGLOR

in future is to develop additional predictors specifically trained for

the phi and psi angles of Glysine, as well as split Proline into

specific (trans-, cis-, down- and up-) conformations. On the

contrary, some other residues (ILE, LEU, PRO, VAL) have much

higher accuracy than the average.

Overall, the accuracy of phi and psi angle predictions by

ANGLOR (with a MAE of 20–45u) is still too low to reconstruct a

meaningful 3D model directly from the predictions. Nevertheless,

it may be possible to exploit the predictions as loose restraints to

guide the fold-recognition and ab initio simulation procedures. We

have recently combined the phi and psi angle predictions into a

profile-profile alignment algorithm [30], where the input features

for the angle prediction are similar as ANGLOR but both phi and

psi predictions were trained by SVM [8]. It was found that the

average TM-score [31] of the first identified templates can be

increased by 2.5% with the introduction of the torsion angle

restraints, where the difference between ANGLOR-predicted

angles and the experimental angles in templates was added to the

profile-profile alignment scores. If coupled with additional features

of solvent accessibility and hydrophobic scoring matrix, the TM-

score improvement can be increased up to 5% [8].

We are also working on incorporating the ANGLOR prediction

into the I-TASSER simulation [22,32] for ab initio protein

structure modeling, where the dihedral angles are used as

restraints to guide the local backbone movements. Although the

average MAE of the phi and psi angles is big, the phi angle

predictions from some specific residues (e.g. ILE, LEU, PRO,

Table 1. Comparison of ANGLOR with random predictor in different environments.

Phi angle Psi angle

MAEANGLOR
4 MAErandom Entropy MAEANGLOR MAErandom Entropy

All 28.2u60.1u 49.3u60.1u 2.67 46.4u60.1u 88.8u60.2u 3.03

SS1 Helix 11.0u60.1u 39.0u60.2u 1.60 28.2u60.1u 85.1u60.3u 1.74

Strand 27.9u60.1u 50.0u60.2u 2.46 39.9u60.2u 93.4u60.4u 2.35

Coil 41.8u60.2u 57.1u60.2u 2.92 63.9u60.2u 89.4u60.2u 3.28

SA2 Buried 24.1u60.1u 46.8u60.2u 2.59 41.5u60.1 u 89.7u60.3u 2.90

Exposed 31.2u60.1u 51.2u60.2u 2.71 49.9u60.2u 88.2u60.2u 3.10

AA3 ALA 22.5u60.3u 45.0u60.4u 2.36 42.7u60.4u 88.3u60.6u 2.76

ARG 25.0u60.4u 46.1u60.5u 2.53 44.1u60.5u 88.5u60.8u 2.91

ASN 37.6u60.5u 54.9u60.6u 2.77 45.9u60.5u 87.3u60.7u 3.24

ASP 30.8u60.4u 48.3u60.5u 2.61 48.9u60.5u 87.6u60.7u 3.16

CYS 27.7u60.6u 47.4u60.8u 2.67 48.7u60.8u 89.7u61.2u 3.05

GLN 25.1u60.4u 46.4u60.6u 2.49 43.0u60.5u 88.0u60.9u 2.85

GLU 23.3u60.3u 44.9u60.4u 2.44 43.1u60.4u 87.8u60.7u 2.83

GLY 75.1u60.5u 94.1u60.6u 3.17 66.9u60.5u 89.0u60.5u 3.34

HIS 31.8u60.6u 49.6u60.7u 2.68 48.2u60.7u 88.6u61.1u 3.10

ILE 18.1u60.2u 43.0u60.4u 2.39 35.3u60.4u 89.4u60.7u 2.67

LEU 18.3u60.2u 42.2u60.4u 2.38 38.1u60.3u 88.4u60.6u 2.79

LYS 25.6u60.3u 46.6u60.4u 2.58 45.6u60.4u 88.2u60.7u 2.95

MET 22.4u60.5u 45.2u60.8u 2.48 40.9u60.7u 88.7u61.2u 2.87

PHE 24.4u60.3u 46.7u60.5u 2.57 40.8u60.5u 89.6u60.9u 2.94

PRO 15.2u60.2u 38.2u60.5u 1.61 61.3u60.5u 90.3u60.8u 2.91

SER 32.3u60.4u 49.2u60.4u 2.67 55.4u60.4u 89.5u60.7u 3.04

THR 26.0u60.3u 45.8u60.4u 2.57 51.1u60.5u 90.0u60.7u 2.99

TRP 23.1u60.5u 45.1u60.9u 2.56 43.5u60.8u 89.5u61.4u 2.88

TYR 25.3u60.4u 47.2u60.6u 2.56 42.3u60.6u 89.7u60.9u 2.94

VAL 20.1u60.2u 44.5u60.4u 2.46 37.6u60.4u 90.0u60.7u 2.70

1SS: residues in different secondary structure
2SA: residues of different solvent accessibility
3AA: 20 amino acid types
4MAE6standard error of mean
doi:10.1371/journal.pone.0003400.t001
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VAL) and in some specific environments (e.g. helix regions), which

have smaller MAE, should be chosen. The work is still in progress

when this paper is prepared.
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